Saltar al contenido
Merck

The niacin required for optimum growth can be synthesized from L-tryptophan in growing mice lacking tryptophan-2,3-dioxygenase.

The Journal of nutrition (2013-05-24)
Miki Terakata, Tsutomu Fukuwatari, Eri Kadota, Mitsue Sano, Masaaki Kanai, Toshikazu Nakamura, Hiroshi Funakoshi, Katsumi Shibata
RESUMEN

In mammals, nicotinamide (Nam) is biosynthesized from l-tryptophan (l-Trp). The enzymes involved in the initial step of the l-Trp→Nam pathway are l-Trp-2,3-dioxygenase (TDO) and indoleamine-2,3-dioxygenase (IDO). We aimed to determine whether tdo-knockout (tdo(-/-)) mice fed a diet without preformed niacin can synthesize enough Nam to sustain optimum growth. Wild-type (WT) and tdo(-/-) mice were fed a chemically defined 20% casein diet with or without preformed niacin (30 mg nicotinic acid/kg) for 28 d. Body weight, food intake, and liver NAD concentrations did not differ among the groups. In the groups of mice fed the niacin-free diet, urinary concentrations of the upstream metabolites kynurenine (320% increase, P < 0.0001), kynurenic acid (270% increase, P < 0.0001), xanthurenic acid (770% increase, P < 0.0001), and 3-hydroxyanthranilic acid (3-HA; 450% increase, P < 0.0001) were higher in the tdo(-/-) mice than in the WT mice, while urinary concentrations of the downstream metabolite quinolinic acid (QA; 50% less, P = 0.0010) and the sum of Nam and its catabolites (10% less, P < 0.0001) were lower in the tdo(-/-) mice than in the WT mice. These findings show that the kynurenine formed in extrahepatic tissues by IDO and subsequent enzymes can be metabolized up to 3-HA, but not into QA. However, the tdo(-/-) mice sustained optimum growth even when fed the niacin-free diet for 1 mo, suggesting they can synthesize the minimum necessary amount of Nam from l-Trp, because the liver can import blood kynurenine formed in extrahepatic tissues and metabolize it into Nam via NAD and the resulting Nam is then distributed back into extrahepatic tissues.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Nicotinamide, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
Nicotinamide, ≥99.5% (HPLC)
Sigma-Aldrich
Kynurenic acid, ≥98%
Sigma-Aldrich
L-Tryptophan, reagent grade, ≥98% (HPLC)
Supelco
Nicotinamide, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Nicotinamide, ≥98% (HPLC), powder
Sigma-Aldrich
Nicotinic acid, ≥99.5% (HPLC)
Sigma-Aldrich
Nicotinic acid, ≥98%
Supelco
Nicotinic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Tryptophan, BioUltra, ≥99.5% (NT)
Supelco
Nicotinic acid, analytical standard
Sigma-Aldrich
Nicotinic acid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥98%
Supelco
Nicotinamide (Niacinamide), analytical standard
Sigma-Aldrich
2,3-Pyridinedicarboxylic acid, 99%
Sigma-Aldrich
Nicotinamide, meets USP testing specifications
Supelco
Tryptophan, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
3-Hydroxyanthranilic acid, 97%
Supelco
L-Tryptophan, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Nicotinamide, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Nicotinamide, ≥98.5% (HPLC)
Nicotinamide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
DL-Kynurenine, ≥95.0% (NT)
Sigma-Aldrich
Nicotinic acid, meets USP testing specifications
Sigma-Aldrich
Nicotinic acid sodium salt, 98%