Saltar al contenido
Merck

Triclosan exacerbates the presence of 14C-bisphenol A in tissues of female and male mice.

Toxicology and applied pharmacology (2014-05-03)
Tyler Pollock, Brandon Tang, Denys deCatanzaro
RESUMEN

Current human generations are commonly exposed to both triclosan (TCS), an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics and epoxies. Both are readily absorbed into circulation and found distributed among diverse tissues. Potential interactions between TCS and BPA are largely unstudied. We investigated whether TCS exposure affects the distribution of ingested (14)C-BPA in select tissues. CF-1 mice were each subcutaneously injected with TCS then orally administered 50 μg/kg (14)C-BPA. Females received 0, 0.2, 0.6, 1, 2, or 18 mg TCS (equivalent respectively to 0, 6.3, 16.9, 30.1, 60.5, and 558.9 mg/kg). Males received 0, 0.2, 2, or 18 mg TCS (equivalent respectively to 0, 5.3, 53.4, and 415.0mg/kg). Levels of radioactivity were measured through liquid scintillation counting in blood serum and brain, reproductive, and other tissues. Significantly elevated levels of radioactivity were observed following combined TCS and (14)C-BPA administration, with minimally effective TCS doses being tissue-dependent (Females: lungs, 0.6 mg; uterus, 1mg; heart, muscle, ovaries, and serum, 18 mg. Males: serum, 0.2mg; epididymides, 2mg). Subsequently, we found that 2 or 6 mg TCS increased radioactivity in the ovaries and serum of females orally given only 5 μg/kg (14)C-BPA. These data indicate that TCS can interact with BPA in vivo, magnifying its presence in certain tissues and serum. The data are consistent with evidence that TCS utilizes enzymes that are critical for metabolism and excretion of BPA. Further research should investigate the mechanisms through which these two chemicals interact at environmentally-relevant doses.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Etanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Supelco
Bisphenol A, ≥99%
Supelco
Etanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
Etanol, standard for GC
Sigma-Aldrich
Triclosan, 97.0-103.0% (active substance, GC)
Sigma-Aldrich
Bisphenol A, 97%
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Etanol
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Etanol, tested according to Ph. Eur.
Supelco
Triclosan, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Bisphenol A, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Etanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
USP
Triclosan, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Etanol, absolute, sales not in Germany, ≥99.8% (vol.)