Saltar al contenido
Merck

Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells.

Molecular biology of the cell (2014-12-30)
Paymon M Azizi, Roman E Zyla, Sha Guan, Changsen Wang, Jun Liu, Steffen-Sebastian Bolz, Bryan Heit, Amira Klip, Warren L Lee
RESUMEN

Transport of insulin across the microvasculature is necessary to reach its target organs (e.g., adipose and muscle tissues) and is rate limiting in insulin action. Morphological evidence suggests that insulin enters endothelial cells of the microvasculature, and studies with large vessel-derived endothelial cells show insulin uptake; however, little is known about the actual transcytosis of insulin and how this occurs in the relevant microvascular endothelial cells. We report an approach to study insulin transcytosis across individual, primary human adipose microvascular endothelial cells (HAMECs), involving insulin uptake followed by vesicle-mediated exocytosis visualized by total internal reflection fluorescence microscopy. In this setting, fluorophore-conjugated insulin exocytosis depended on its initial binding and uptake, which was saturable and much greater than in muscle cells. Unlike its degradation within muscle cells, insulin was stable within HAMECs and escaped lysosomal colocalization. Insulin transcytosis required dynamin but was unaffected by caveolin-1 knockdown or cholesterol depletion. Instead, insulin transcytosis was significantly inhibited by the clathrin-mediated endocytosis inhibitor Pitstop 2 or siRNA-mediated clathrin depletion. Accordingly, insulin internalized for 1 min in HAMECs colocalized with clathrin far more than with caveolin-1. This study constitutes the first evidence of vesicle-mediated insulin transcytosis and highlights that its initial uptake is clathrin dependent and caveolae independent.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Cloruro de sodio, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O55:B5, purified by phenol extraction
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Supelco
Cloruro de sodio, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Cloruro de sodio, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Cloruro de sodio, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Cloruro de sodio, tested according to Ph. Eur.
Sigma-Aldrich
Cloruro de sodio, tablet
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Cloruro de sodio, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Cloruro de sodio, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Supelco
4-tert-Octylphenol monoethoxylate solution, 10 μg/mL in acetone, analytical standard