Saltar al contenido
Merck

Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue.

Drug testing and analysis (2014-11-28)
Tim Sobolevsky, Ilya Prasolov, Grigory Rodchenkov
RESUMEN

The data are reported for an in vitro metabolism study of two novel synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and its fluorinated analog N-(1-adamantyl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (5F-APICA, STS-135), which are active ingredients of smoking mixtures sold in Russia since 2012. The cannabinoids were isolated from herbal mixtures using preparative liquid chromatography and then incubated with human liver microsomes (HLMs). The formed metabolites were characterized by liquid chromatography - triple quadrupole mass spectrometry and high-resolution mass spectrometry with electrospray ionization in positive ion mode. It was found that HLMs produce mono-, di-, and trihydroxylated metabolites, as well as N-desalkyl metabolites, which can be further hydroxylated; the amide bond resisted the metabolic cleavage. For 5F-APICA, a series of oxidative defluorination products formed as well. For in vivo confirmation of the formed in vitro metabolites, spot urine samples from drug users were analyzed with the created method. It was shown that for the detection of APICA abuse, the preferred metabolites are the di- and tri-hydroxylated species, while in case of 5F-APICA, a monohydroxy metabolite is a better target. The N-despentyl (desfluoropentyl) hydroxyadamantyl metabolite also provides good retrospectivity to confirm the administration of any of these cannabinoids.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Fosfato de potasio monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Glicerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Dietiléter, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Glicerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glicerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Sulfato de sodio, ACS reagent, ≥99.0%, anhydrous, granular
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Fosfato de sodio dibasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Sulfato de sodio, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Dietiléter, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Dietiléter, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Potassium carbonate, ACS reagent, ≥99.0%
Sigma-Aldrich
Fosfato de sodio dibasic, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Fosfato de potasio monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Fosfato de sodio dibasic, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E 339, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Glicerol, ≥99.5%