Saltar al contenido
Merck

Peripapillary rat sclera investigated in vivo with polarization-sensitive optical coherence tomography.

Investigative ophthalmology & visual science (2014-10-30)
Bernhard Baumann, Sabine Rauscher, Martin Glösmann, Erich Götzinger, Michael Pircher, Stanislava Fialová, Marion Gröger, Christoph K Hitzenberger
RESUMEN

To demonstrate polarization-sensitive (PS) optical coherence tomography (OCT) for noninvasive, volumetric, and quantitative imaging of the birefringent properties of the peripapillary rat sclera; to compare the findings from PS-OCT images to state-of-the-art histomorphometric analysis of the same tissues. A high-speed PS-OCT prototype operating at 840 nm was modified for imaging the rat eye. Densely sampled PS-OCT raster scans covering an area of ~1.5 × 1.5 mm centered at the papilla were acquired in the eyes of anesthetized male Sprague-Dawley rats. Cross-sectional PS-OCT images were computed, and fundus maps displaying the birefringent properties of the sclera were analyzed. Postmortem histomorphologic analysis was performed. Polarization-sensitive OCT enables visualization of the polarization properties of ocular tissues in vivo. The birefringent characteristics of the rat sclera were quantitatively assessed. Scleral birefringence formed a donut-shaped pattern around the papilla with significantly increased values of 0.703 ± 0.089°/μm (i.e., 1.64 × 10(-3) ± 0.2 × 10(-3); mean ± standard deviation) and 0.721 ± 0.084°/μm (i.e., 1.68 × 10(-3) ± 0.2 × 10(-3)) at an eccentricity of 0.4 mm for the left and right eyes, respectively. Birefringent axis orientation maps revealed a ring-shaped distribution around the optic nerve. Postmortem PS-OCT micrographs provided access to retinal and scleral microstructure and were compared to standard histomorphologic analysis. Polarization-sensitive OCT enables quantitative imaging of tissue polarization properties in addition to conventional OCT imaging based on reflectivity. In the rat sclera, in vivo PS-OCT provides access to volumetric mapping of birefringence. Scleral birefringence is associated with microstructural tissue organization. Therefore, PS-OCT should prove a valuable tool for the in vivo investigation of peripapillary sclera in glaucoma.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Etanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
o-Xylene, reagent grade, ≥98.0%
Supelco
Etanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Etanol, standard for GC
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Etanol
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Etanol, tested according to Ph. Eur.
Supelco
o-Xylene, analytical standard
Sigma-Aldrich
Xylazine, ≥99%
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Etanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Supelco
o-Xylene, Pharmaceutical Secondary Standard; Certified Reference Material