Saltar al contenido
Merck

Characterization of the active site properties of CYP4F12.

Drug metabolism and disposition: the biological fate of chemicals (2014-07-31)
John Eksterowicz, Dan A Rock, Brooke M Rock, Larry C Wienkers, Robert S Foti
RESUMEN

Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Peróxido de hidrógeno solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Millipore
Peróxido de hidrógeno solution, 3%, suitable for microbiology
Sigma-Aldrich
Metanol, Absolute - Acetone free
Supelco
Peróxido de hidrógeno solution, ≥30%, for trace analysis
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
Metanol, analytical standard
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Supelco
Peróxido de hidrógeno solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Acetonitrilo, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrilo, Pharmaceutical Secondary Standard; Certified Reference Material