Skip to Content
Merck
  • Long-chain fatty acid analogues suppress breast tumorigenesis and progression.

Long-chain fatty acid analogues suppress breast tumorigenesis and progression.

Cancer research (2014-10-12)
Udi Gluschnaider, Rachel Hertz, Sarit Ohayon, Elia Smeir, Martha Smets, Eli Pikarsky, Jacob Bar-Tana
ABSTRACT

Obesity and type 2 diabetes (T2D) are associated with increased breast cancer incidence and mortality, whereas carbohydrate-restricted ketogenic diets ameliorate T2D and suppress breast cancer. These observations suggest an inherent efficacy of nonesterified long-chain fatty acids (LCFA) in suppressing T2D and breast tumorigenesis. In this study, we investigated novel antidiabetic MEDICA analogues consisting of methyl-substituted LCFA that are neither β-oxidized nor esterified to generate lipids, prompting interest in their potential efficacy as antitumor agents in the context of breast cancer. In the MMTV-PyMT oncomouse model of breast cancer, in which we confirmed that tumor growth could be suppressed by a carbohydrate-restricted ketogenic diet, MEDICA treatment suppressed tumor growth, and lung metastasis, promoting a differentiated phenotype while suppressing mesenchymal markers. In human breast cancer cells, MEDICA treatment attenuated signaling through the STAT3 and c-Src transduction pathways. Mechanistic investigations suggested that MEDICA suppressed c-Src-transforming activity by elevating reactive oxygen species production, resulting in c-Src oxidation and oligomerization. Our findings suggest that MEDICA analogues may offer therapeutic potential in breast cancer and overcome the poor compliance of patients to dietary carbohydrate restriction.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycerol, analytical standard
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
SAFC
L-Glutathione oxidized
Sigma-Aldrich
Glycerol, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium fluoride, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Supelco
Sodium Fluoride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Sodium fluoride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Supelco
Fluoride ion solution for ISE, 0.1 M F-, for ion-selective electrodes
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture