Skip to Content
Merck
  • Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

Journal of chromatography. A (2014-07-21)
Davy Baudelet, Nadège Schifano-Faux, Alina Ghinet, Xavier Dezitter, Florent Barbotin, Philippe Gautret, Benoit Rigo, Philippe Chavatte, Régis Millet, Christophe Furman, Claude Vaccher, Emmanuelle Lipka
ABSTRACT

Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 μM versus 1.11 and 3.53 μM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.

MATERIALS
Product Number
Brand
Product Description

Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
Acetonitrile, analytical standard
Supelco
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9% (GC)
Sigma-Aldrich
Ethanol
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ultrapure Acetonitrile
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Pidolic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%