Skip to Content
Merck
  • High-dose alcohol induces reactive oxygen species-mediated apoptosis via PKC-β/p66Shc in mouse primary cardiomyocytes.

High-dose alcohol induces reactive oxygen species-mediated apoptosis via PKC-β/p66Shc in mouse primary cardiomyocytes.

Biochemical and biophysical research communications (2014-12-17)
Yuehong Wang, Jinjun Zhao, Wei Yang, Yayan Bi, Jing Chi, Juanjuan Tian, Weimin Li
ABSTRACT

Cardiac dysfunction caused by excessive alcohol consumption is a specific disease, alcoholic cardiomyopathy (ACM). High-dose alcohol has been found to induce oxidation stress and apoptosis in cardiomyocytes, but the signaling link between alcohol-induced oxidation stress and apoptosis in cardiomyocytes remains to be elucidated. To address the issue, we exposed primary cardiomyocytes from neonatal mouse hearts to high doses of alcohol (50mM, 100mM, and 200 mM). We found that alcohol induced dose-dependent phosphorylation of p66shc, and reactive oxygen species (ROS) production increased in parallel with phosphorylation levels of p66shc. Exposure to alcohol also led to loss of mitochondrial membrane potential and cytochrome c release. Depletion of p66Shc and inhibition of protein kinase C-β (PKC-β) successfully reversed all the effects and suppressed alcohol-induced apoptosis in cardiomyocytes. Collectively, our study provides a molecular basis for signaling transduction of alcohol-induced oxidation stress and apoptosis of cardiomyocytes, which may facilitate the prevention and treatment of ACM.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Cytochrome c from equine heart, BioUltra, ≥99% (SDS-PAGE), powder, suitable for mammalian cell culture
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
Ethanol
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% (SDS-PAGE)
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% based on Mol. Wt. 12,384 basis
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis, powder, suitable for mammalian cell culture
Sigma-Aldrich
Cytochrome c from pigeon breast muscle, ≥95% based on Mol. Wt. 12,173 basis
Sigma-Aldrich
Cytochrome c from equine heart, BioReagent, suitable for GFC marker
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.005% water
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Cytochrome c from Saccharomyces cerevisiae, ≥85% based on Mol. Wt. 12,588 basis
Sigma-Aldrich
ProteoMass Cytochrome c MALDI-MS Standard, vial of 10 nmol, (M+H+) 12,361.96 Da by calculation
Sigma-Aldrich
Reagent Alcohol, reagent grade
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Reagent Alcohol, denatured, suitable for HPLC