Skip to Content
Merck
  • Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms.

Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms.

ACS nano (2014-04-18)
Gaulthier Rydzek, Tatyana G Terentyeva, Amir Pakdel, Dmitri Golberg, Jonathan P Hill, Katsuhiko Ariga
ABSTRACT

Simple preparation methods of chemically versatile and highly functionalizable surfaces remain rare and present a challenging research objective. Here, we demonstrate a simultaneous electropolymerization and electro-click functionalization process (SEEC) for one-pot self-construction of aniline- and naphthalene-based functional polymer films where both polymerization and click functionalization are triggered by applying electrochemical stimuli. Cyclic voltammetry (CV) can be applied for the simultaneous oxidation of 4-azidoaniline and the reduction of Cu(II) ions, resulting in polymerization of the former, and the Cu(I)-catalyzed alkyne/azide cycloaddition ("click" chemistry). Properties of the films obtained can be tuned by varying their morphology, their chemically "clicked" content, or by postconstruction functionalization. To demonstrate this, the CV scan rates, component monomers, and "clicked" molecules were varied. Covalent postconstruction immobilization of horseradish peroxidase was also performed. Consequently, pseudocapacitance and enzyme activity were affected. SEEC provides surface scientists an easy access to a wide range of functionalization possibilities in several fields including sensors, fuel cells, photovoltaics, and biomaterials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Aniline, ReagentPlus®, 99%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
Aniline, analytical standard
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Supelco
4-Aminoantipyrine, for spectrophotometric det. of H2O2 and phenols, ≥98.0%
Sigma-Aldrich
4-Aminoantipyrine, puriss. p.a., reag. Ph. Eur., ≥99%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, 99.999% trace metals basis
Sigma-Aldrich
Phenylacetylene, 98%
Sigma-Aldrich
Aniline, ACS reagent, ≥99.5%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, purum p.a., crystallized, ≥99.0% (RT)
Sigma-Aldrich
Copper(II) sulfate pentahydrate, 99.995% trace metals basis
Sigma-Aldrich
4-Aminoantipyrine, reagent grade
Sigma-Aldrich
Copper(II) sulfate pentahydrate, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, BioReagent, suitable for cell culture, ≥98%
Supelco
4-Aminoantipyrine, analytical standard
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Copper(II) sulfate pentahydrate, puriss., suitable for, meets analytical specification of Ph. Eur., BP, USP,FCC
Sigma-Aldrich
Zirconyl chloride octahydrate, reagent grade, 98%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, ReagentPlus®, ≥98.0%
Sigma-Aldrich
Copper(II) sulfate pentahydrate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99-102%
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Copper(II) sulfate pentahydrate, ACS reagent, ≥98.0%
USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Phenol, natural, 97%, FG
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof