Skip to Content
Merck
  • Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases.

Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases.

Journal of agricultural and food chemistry (2015-07-25)
Amel Ben Lagha, Stéphanie Dudonné, Yves Desjardins, Daniel Grenier
ABSTRACT

Blueberries contain significant amounts of flavonoids to which a number of beneficial health effects in humans have been associated. The present study investigated the effect of a polyphenol-rich lowbush blueberry (Vaccinium angustifolium Ait.) extract on the two main etiologic components of periodontitis, a multifactorial disorder affecting the supporting structures of the teeth. Phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins made up 16.6, 12.9, and 2.7% of the blueberry extract, respectively. The blueberry extract showed antibacterial activity (MIC = 1 mg/mL) against the periodontopathogenic bacterium Fusobacterium nucleatum. This property may result from the ability of blueberry polyphenols to chelate iron. Moreover, the blueberry extract at 62.5 μg/mL inhibited F. nucleatum biofilm formation by 87.5 ± 2.3%. Subsequently, the ability of the blueberry extract to inhibit the NF-κB signaling pathway in U937-3xκB cells was investigated. The blueberry extract dose-dependently inhibited the activation of NF-κB induced by F. nucleatum. In addition, a pretreatment of macrophages with the blueberry extract (62.5 μg/mL) inhibited the secretion of IL-1β, TNF-α, and IL-6 by 87.3 ± 1.3, 80.7 ± 5.6, and 28.2 ± 9.3%, respectively, following a stimulation with F. nucleatum. Similarly, the secretion of MMP-8 and MMP-9 was also dose-dependently inhibited. This dual antibacterial and anti-inflammatory action of lowbush blueberry polyphenols suggests that they may be promising candidates for novel therapeutic agents.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
trans-Ferulic acid, 99%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Matrix Metalloproteinase-9 human, recombinant, >90% (SDS-PAGE), buffered aqueous solution
Sigma-Aldrich
trans-Ferulic acid, ≥99%
Sigma-Aldrich
4-Hydroxybenzoic acid, ReagentPlus®, 99%
Sigma-Aldrich
4-Hydroxybenzoic acid, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Isorhamnetin, ≥95.0% (HPLC)
Sigma-Aldrich
Myricetin, ≥96.0% (HPLC)
Sigma-Aldrich
3,4-Dihydroxybenzoic acid, ≥97.0% (T)
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
Myricetin, ≥96.0%, crystalline
Sigma-Aldrich
Caffeic acid, ≥98.0% (HPLC)
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Acetone, ≥99%, FCC, FG
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%