Skip to Content
Merck
  • Identification and quantification of electrochemically generated metabolites of thyroxine by means of liquid chromatography/electrospray-mass spectrometry and countergradient liquid chromatography/inductively coupled plasma-mass spectrometry.

Identification and quantification of electrochemically generated metabolites of thyroxine by means of liquid chromatography/electrospray-mass spectrometry and countergradient liquid chromatography/inductively coupled plasma-mass spectrometry.

Journal of chromatography. A (2015-10-13)
Chun Kong Mak, Christoph A Wehe, Michael Sperling, Uwe Karst
ABSTRACT

Thyroxine (T4) is one of the major thyroid hormones, which regulates cellular metabolism, central nervous system development, body temperature, reproduction and growth. The simulation of oxidation reactions of T4 may provide further information about the fate of T4 in cells without using laborious in vitro and susceptible in vivo tests. In this study, oxidation products of T4, generated inside an electrochemical (EC) cell, were separated and identified by on-line EC/liquid chromatography/electrospray ionization-mass spectrometry (EC/LC/ESI-MS). In another experimental setup, the electrogenerated metabolites were separated by LC, subsequently mixed with a compensating countergradient (cg), and finally introduced into an inductively coupled plasma-mass spectrometer (ICP-MS). The gradient compensation was achieved by an additional pump module which generated a reversed gradient to the analytical gradient used for the separation. This setup enabled a constant composition of the LC eluent flowing into the plasma so that stable plasma conditions and a uniform response over the complete elution time could be achieved. Combined with identification information from online-coupled EC/LC/ESI-MS, robust and reliable quantification of T4 and its oxidation products was accomplished by on-line coupled EC/cgLC/ICP-MS, with LOD of 33nM of iodine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
L-Thyroxine, ≥98% (HPLC)
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ammonia solution, 4 M in methanol
Sigma-Aldrich
Ammonia solution, 0.4 M in THF
Sigma-Aldrich
L-Thyroxine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Zirconyl chloride octahydrate, reagent grade, 98%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ammonia solution, 2.0 M in isopropanol
Sigma-Aldrich
Ammonia solution, 2.0 M in ethanol
Sigma-Aldrich
Ammonia solution, 2.0 M in methanol
Sigma-Aldrich
Ammonia solution, 0.4 M in dioxane