Skip to Content
Merck
  • Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

Journal of pharmaceutical and biomedical analysis (2014-03-08)
Pilar Viñas, Marta Pastor-Belda, Natalia Campillo, María Bravo-Bravo, Manuel Hernández-Córdoba
ABSTRACT

Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material.

MATERIALS
Product Number
Brand
Product Description

Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Potassium hydroxide concentrate, 0.1 M KOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Carbon tetrachloride, anhydrous, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
Methanol, analytical standard
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)