Skip to Content
Merck
  • Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

ACS nano (2014-07-23)
Vladimir Lesnyak, Chandramohan George, Alessandro Genovese, Mirko Prato, Alberto Casu, S Ayyappan, Alice Scarpellini, Liberato Manna
ABSTRACT

We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Selenium, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
Selenium, pellets, <5 mm particle size, ≥99.999% trace metals basis
Sigma-Aldrich
Selenium, pellets, <5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Acetone, ≥99%, FCC, FG
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Supelco
Acetone, analytical standard
Sigma-Aldrich
Tetrachloroethylene, ACS reagent, ≥99.0%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Tetrachloroethylene, suitable for HPLC, ≥99.9%
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%