Skip to Content
Merck
  • A simple pharmacokinetic model of alendronate developed using plasma concentration and urine excretion data from healthy men.

A simple pharmacokinetic model of alendronate developed using plasma concentration and urine excretion data from healthy men.

Drug development and industrial pharmacy (2013-07-28)
Jung-Woo Chae, Jeong-Won Seo, Bimit Mahat, Hwi-Yeol Yun, In-Hwan Baek, Byung-Yo Lee, Dong-Hyun Kim, Kwang-Il Kwon
ABSTRACT

The study of pharmacokinetics of alendronate has been hampered by difficulties in accurately and reproducibly determining their concentrations in serum and urine. Thus, pharmacokinetic characteristics of alendronate have been described in many reports based on urinary excretion data; and plasma pharmacokinetics and the simultaneous pharmacokinetic models of alendronate in plasma and urine are not available. The aims of this study were to measure alendronate concentration in plasma and excretion in urine concurrently and to develop compartmental pharmacokinetic model using urine data. In open-label, single-dose pharmacokinetic study, 10 healthy male volunteers received oral dose of alendronate (70 mg tablet). Blood and urine alendronate concentrations were determined using validated high-performance liquid chromatography method. Non-compartmental analysis was performed using WinNonlin program (Pharsight Inc., Apex, NC). A one-compartment pharmacokinetic model was applied to describe pharmacokinetics of alendronate. A peak plasma alendronate concentration of 33.10 ± 14.32 ng/mL was attained after 1.00 ± 0.16 h. The cumulative amount of alendronate excreted in urine and peak excretion rate were 731.28 ± 654.57 μg and 314.68 ± 395.43 μg/h, respectively. The model, which included first-order absorption rate for oral dosing, showed good fit to alendronate data obtained from plasma and urine. The absorption rate constant was 2.68 ± 0.95 h(-1). The elimination rate constants Kurine and Knon-ur were 0.005 ± 0.004 h(-1) and 0.42 ± 0.08 h(-1), respectively. The pharmacokinetics of alendronate in plasma and urine of healthy men can be predicted using one-compartment model, and thus the behavior of drug in plasma can be estimated from urinary excretion data.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
USP
Monobasic potassium phosphate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Potassium phosphate monobasic, ACS reagent, ≥99.0%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
USP
Alendronate sodium, United States Pharmacopeia (USP) Reference Standard
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material