Skip to Content
Merck
  • Alendronate-induced atypical bone fracture: evidence that the drug inhibits osteogenesis.

Alendronate-induced atypical bone fracture: evidence that the drug inhibits osteogenesis.

Journal of clinical pharmacy and therapeutics (2014-03-26)
S Patntirapong, W Singhatanadgit, S Arphavasin
ABSTRACT

Alendronate (ALN) is used for the treatment of post-menopausal osteoporosis. By reducing bone turnover, it increases bone mineral density. However, recent reports suggest an increased risk of atypical bone fractures after long-term ALN administration. Despite its well-known anti-osteoclastic activity, it is unclear whether ALN also suppresses human mesenchymal stem cell (hMSC)-mediated osteogenesis, thus possibly resulting in atypical bone fragility. We hypothesized that ALN does this and we look at its in vitro effects on osteogenesis. Morphological analysis, reverse transcriptase polymerase chain reaction, cell viability, alkaline phosphatase (ALP) activity and mineralization assays were investigated in hMSCs treated with a wide range of ALN. After treatment with high concentrations of ALN for 3 and 7 days, cell viability was significantly reduced and cell morphology was altered. Osteogenic differentiation of hMSCs was also substantially suppressed as demonstrated by decreased ALP activity although ALN did not affect osteogenic-related genes tested. Furthermore, ALN at all concentrations tested drastically inhibited alizarin red S-positive mineralized matrix. ALN has a strong inhibitory effect on hMSC-mediated osteogenesis by suppressing cell proliferation, osteoblast differentiation and function. The insight gained may help in the development of safer alternatives.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Sigma-Aldrich
Glycine, BioUltra, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Cetylpyridinium chloride, meets USP testing specifications
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
USP
Glycine, United States Pharmacopeia (USP) Reference Standard
Cetylpyridinium chloride, European Pharmacopoeia (EP) Reference Standard
Glycine, European Pharmacopoeia (EP) Reference Standard
USP
Cetylpyridinium chloride, United States Pharmacopeia (USP) Reference Standard
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology