Skip to Content
Merck
  • Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery.

Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery.

Nanotechnology (2014-12-10)
Filippo Rossi, Raffaele Ferrari, Franca Castiglione, Andrea Mele, Giuseppe Perale, Davide Moscatelli
ABSTRACT

The possibility to direct pharmacological treatments targeting specific cell lines using polymer nanoparticles is one of the main novelties and perspectives in nanomedicine. However, sometimes, the ability to maintain NPs localized at the site of the injection that work as a drug reservoir can represent a good and complementary option. In this direction we built a composite material made of polymeric hydrogel functionalized with polymer NPs. ϵ-caprolactone and polyethylene glycol have been copolymerized in a two-step synthesis of PEGylated NPs, while hydrogel was synthesized through polycondensation between NPs, agarose and branched polyacrylic acid. NP functionalization was verified with Fourier transform infrared spectroscopy (FTIR), high resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy and release kinetics from a hydrogel matrix and compared with NPs only physically entrapped into a hydrogel matrix. The characteristics of the resulting composite hydrogel-NPs system were studied both in terms of rheological properties and in its ability to sustain the release of To-Pro3, used as a drug mimetic compound to represent a promising drug delivery device.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium persulfate, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Tin(II) 2-ethylhexanoate, 92.5-100.0%
Sigma-Aldrich
Potassium persulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Supelco
Glycerol, analytical standard
Sigma-Aldrich
1,2-Propanediol, ReagentPlus®, 99%
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
1,2-Propanediol, ACS reagent, ≥99.5%
Sigma-Aldrich
1,2-Propanediol, puriss. p.a., ACS reagent, ≥99.5% (GC)
Sigma-Aldrich
1,2-Propanediol, tested according to Ph. Eur.
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glycerol, FCC, FG
Supelco
1,2-Propanediol, analytical standard
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
1,2-Propanediol, meets analytical specification of Ph. Eur., BP, USP, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Potassium peroxodisulfate, puriss. p.a., ACS reagent, ≥99.0% (RT)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets