Skip to Content
Merck
  • Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth.

Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth.

Nanoscale research letters (2014-11-12)
Pierre-Yves Collart-Dutilleul, Ivan Panayotov, Emilie Secret, Frédérique Cunin, Csilla Gergely, Frédéric Cuisinier, Marta Martin
ABSTRACT

The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard