Skip to Content
Merck
  • A novel method for characterization and comparison of reversed-phase column selectivity.

A novel method for characterization and comparison of reversed-phase column selectivity.

Journal of chromatography. A (2014-08-27)
Jixia Wang, Chaoran Wang, Zhimou Guo, Xuefang Dong, Yuansheng Xiao, Xingya Xue, Xiuli Zhang, Xinmiao Liang
ABSTRACT

Characterization of reverse-phase column selectivity is helpful for chromatographers to select an optimal column. A novel method, based on linear solvation energy relationships (LSERs) combined with fundamental retention equations, was developed to characterize and compare reversed-phase column selectivity. The retention times of 25 elaborately selected solutes on 12 reversed-phase columns were determined in three linear gradient elutions. Using these retention times, fundamental retention equations were acquired by a complex sample analysis software system (CSASS). When 0%, 10%, 20%, 30%, 40% and 50% acetonitrile were introduced into the fundamental retention equations, the corresponding retention factors were predicted and used to obtain LSER equations by multiple linear regression. In the gradient elution, the retention times of solutes could be accurately determined and the excessively long or short analysis time could be avoided. As the retention factor (lnkw) at a hypothetical 0% organic modifier closely reflected properties of columns, coefficients of LSERs equations obtained based on lnkw were employed to discuss the properties of different stationary phases. An angle and a spider diagram based on solvation energy vectors were used to compare selectivity differences between stationary phases, which provided a visual means for users to select appropriate columns with orthogonal or similar selectivity. These results of column selectivities were compared with those obtained by geometric orthogonality approach, and a consistent result was acquired. Finally, Click TE-CD and XCharge C18PN with highest difference in column selectivity were applied to the separation of Psoralea corylifolia extraction.

MATERIALS
Product Number
Brand
Product Description

Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Supelco
Methanol, analytical standard
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%