Skip to Content
Merck
  • Mechanistic insights on chaotropic interactions of liophilic ions with basic pharmaceuticals in polar ionic mode liquid chromatography.

Mechanistic insights on chaotropic interactions of liophilic ions with basic pharmaceuticals in polar ionic mode liquid chromatography.

Journal of chromatography. A (2014-10-15)
Edmond Sanganyado, Zhijiang Lu, Jay Gan
ABSTRACT

We report for the first time the effect of liophilic mobile phase additives on the mechanism of chiral recognition of basic chiral pharmaceutical on a vancomycin based chiral stationary phase (CSP). Using methanol as the mobile phase and 0.005% formic acid as pH modifier, we evaluated the effect of different concentrations of three types of liophilic anions, formate (HCOO(-)), nitrate (NO3(-)), and acetate (CH3COO(-)), on enantioresolution (Rs), enantioselectivity (α) and retention factor (k) of enantiomers of fluoxetine and atenolol. The effect of liophilic ion types on k followed the Hofmeister series: CH3COO(-)>HCOO(-)>NO3(-). Increasing concentration from 4 to 20mM resulted in decreases in Rs and k in accordance to hydrophobicity of the liophilic anion. The effect of temperature or mobile phase composition on enantioseparation was determined at 13-40°C. For both analytes, standard changes in enthalpy (ΔH°) and entropy (ΔS°) calculated using van't Hoff plots (lnk against 1/T) to varied from -4.99 to -0.63 kJ/mol and -11.82 to 9.47 J/mol, respectively. The van't Hoff plots showed elution order of the enantiomers of each analyte did not reverse in the temperature range studied. Chiral recognition of the enantiomers of atenolol and fluoxetine in the presence of liophilic ions was enthalpy driven.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Ethanol
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 1% cyclohexane, A15 CYCLO1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, absolute, reag. ISO, reag. Ph. Eur., ≥99.8% (GC), liquid (clear, colorless)
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis