Skip to Content
Merck
  • Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.).

Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.).

The Journal of pharmacy and pharmacology (2014-04-05)
Zong-Quan Ou, David M Schmierer, Clare J Strachan, Thomas Rades, Arlene McDowell
ABSTRACT

To investigate effects of different postharvest drying processes and storage conditions on key antioxidants in Sonchus oleraceus L. leaves. Fresh leaves were oven-dried (60°C), freeze-dried or air-dried (∼25°C) for 6 h, 24 h and 3 days, respectively. Design of experiments (DOE) was applied to study the stability of antioxidants (caftaric, chlorogenic and chicoric acids) in S. oleraceus leaves and leaf extracts stored at different temperatures (4, 25 and 50°C) and relative humidities (15%, 43% and 75%) for 180 days. The concentration of antioxidants was quantified by a HPLC-2,2'-diphenylpicrylhydrazyl post-column derivatisation method. Antioxidant activity was assessed by a cellular antioxidant activity assay. The three antioxidants degraded to unquantifiable levels after oven-drying. More than 90% of the antioxidants were retained by freeze-drying and air-drying. Both leaf and extract samples retained >90% of antioxidants, except those stored at 75% relative humidity. Leaf material had higher antioxidant concentrations and greater cellular antioxidant activity than corresponding extract samples. Freeze-drying and air-drying preserved more antioxidants in S. oleraceus than oven-drying. From DOE analysis, humidity plays an important role in degradation of antioxidants during storage. To preserve antioxidant activity, it is preferable to store S. oleraceus as dried leaf material.

MATERIALS
Product Number
Brand
Product Description

Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Quercetin, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
USP
Sodium bicarbonate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium bicarbonate, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Sodium hydrogencarbonate, −40-+140 mesh, ≥95%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Quercetin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture