Skip to Content
Merck

Unusually Large Young's Moduli of Amino Acid Molecular Crystals.

Angewandte Chemie (International ed. in English) (2015-09-17)
Ido Azuri, Elena Meirzadeh, David Ehre, Sidney R Cohen, Andrew M Rappe, Meir Lahav, Igor Lubomirsky, Leeor Kronik
ABSTRACT

Young's moduli of selected amino acid molecular crystals were studied both experimentally and computationally using nanoindentation and dispersion-corrected density functional theory. The Young modulus is found to be strongly facet-dependent, with some facets exhibiting exceptionally high values (as large as 44 GPa). The magnitude of Young's modulus is strongly correlated with the relative orientation between the underlying hydrogen-bonding network and the measured facet. Furthermore, we show computationally that the Young modulus can be as large as 70-90 GPa if facets perpendicular to the primary direction of the hydrogen-bonding network can be stabilized. This value is remarkably high for a molecular solid and suggests the design of hydrogen-bond networks as a route for rational design of ultra-stiff molecular solids.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Gly-Gly, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Alanine, ≥98% (TLC)
Sigma-Aldrich
L-Alanine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Alanine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Alanine, ≥99%
Sigma-Aldrich
Gly-Gly, BioPerformance Certified, suitable for cell culture, ≥99%
Sigma-Aldrich
Gly-Gly, ≥99% (titration)
Sigma-Aldrich
Gly-Gly, BioXtra, ≥99.0% (NT)
Sigma-Aldrich
DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98% (HPLC)
Sigma-Aldrich
L-Alanine-12C3, 99.9 atom % 12C
Sigma-Aldrich
DL-Serine, ≥98% (TLC)