Direkt zum Inhalt
Merck

Exhaust characteristics during the pyrolysis of ZnCl2 immersed biosludge.

Journal of hazardous materials (2012-06-29)
Hung-Lung Chiang, Kuo-Hsiung Lin, Hua-Hsien Chiu
ZUSAMMENFASSUNG

Biosludge can be reused as an adsorbent after ZnCl(2) activation, pyrolysis, washing with HCl and distilled water, and drying. But the pyrolysis exhaust of ZnCl(2) immersed sludge can be hazardous to human health and the environment. The chemical composition, including carbon, nitrogen, hydrogen, sulfur and 21 trace elements, as well as the physical characteristics, including specific surface area, pore volume, pore size distribution and pore diameter of pyrolytic residue, were investigated in this work. In addition, the components of pyrolytic exhaust including 30 VOC species and 5 odorous sulfur gases were determined to evaluate the exhaust characteristics. The results indicated that the pyrolytic temperature was higher than 500°C, the specific surface area could be over 900 m(2)/g, and the total pore volume could be up to 0.8 cm(3)/g at 600°C. Exhaust concentration fractions of VOC groups were about 65-71% oxygenated VOCs, 18-21% chlorinated VOCs, 4-6% aromatic VOCs, and 6-10% acrylonitrile and cyclohexane under the specific conditions in this study.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Zinkchlorid, reagent grade, ≥98%
Sigma-Aldrich
Zinkchlorid, ACS reagent, ≥97%
Sigma-Aldrich
Zinkchlorid, anhydrous, powder, ≥99.995% trace metals basis
Sigma-Aldrich
Zinkchlorid 0.1 M -Lösung
Sigma-Aldrich
Zinkchlorid -Lösung, 1.0 M in diethyl ether
Sigma-Aldrich
Zinkchlorid -Lösung, 0.5 M in THF
Sigma-Aldrich
Zinkchlorid, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Zinkchlorid -Lösung, 1.9 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Zinkchlorid, 99.999% trace metals basis
Sigma-Aldrich
Zinkchlorid, AnhydroBeads, amorphous, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Zinkchlorid, AnhydroBeads, amorphous, −10 mesh, 99.999% trace metals basis