Direkt zum Inhalt
Merck
  • Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.

Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.

The journal of physical chemistry. B (2012-07-31)
Matt Petrowsky, Allison Fleshman, Mohd Ismail, Daniel T Glatzhofer, Dharshani N Bopege, Roger Frech
ZUSAMMENFASSUNG

Onsager's model of the dielectric constant is used to provide a molecular-level picture of how the dielectric constant affects mass and charge transport in organic liquids and organic liquid electrolytes. Specifically, the molecular and system parameters governing transport are the molecular dipole moment μ and the solvent dipole density N. The compensated Arrhenius formalism (CAF) writes the temperature-dependent ionic conductivity or diffusion coefficient as an Arrhenius-like expression that also includes a static dielectric constant (ε(s)) dependence in the exponential prefactor. The temperature dependence of ε(s) and therefore the temperature dependence of the exponential prefactor is due to the quantity N/T, where T is the temperature. Using the procedure described in the CAF, values of the activation energy can be obtained by scaling out the N/T dependence instead of the ε(s) dependence. It has been previously shown that a plot of the prefactors versus ε(s) results in a master curve, and here it is shown that a master curve also results by plotting the prefactors against N/T. Therefore, the CAF can be applied by using temperature-dependent density data instead of temperature-dependent dielectric constant data. This application is demonstrated for diffusion data of n-nitriles, n-thiols, n-acetates, and 2-ketones, as well as conductivity data for dilute tetrabutylammonium triflate-nitrile electrolytes.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Tetrabutylammoniumphosphat monobasisch -Lösung, 1.0 M in H2O
Sigma-Aldrich
Tetrabutylammoniumfluorid -Lösung, 1.0 M in THF
Sigma-Aldrich
Tetrabutylammoniumhydroxid -Lösung, 40 wt. % in H2O
Sigma-Aldrich
Tetrabutylammoniumhydroxid -Lösung, 1.0 M in methanol
Sigma-Aldrich
Tetrabutylammoniumhydrogensulfat, 97%
Sigma-Aldrich
Tetrabutylammoniumphosphat monobasisch, puriss., 99% (T)
Sigma-Aldrich
Tetrabutylammoniumchlorid, ≥97.0% (NT)
Supelco
Tetrabutylammoniumhydroxid -Lösung, ~40% in water
Sigma-Aldrich
Tetrabutylammoniumbromid, ACS reagent, ≥98.0%
Sigma-Aldrich
Tetrabutylammoniumiodid, reagent grade, 98%
Sigma-Aldrich
Tetrabutylammoniumbromid, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Tetrabutylammoniumbisulfat, puriss., ≥99.0% (T)
Sigma-Aldrich
Tetrabutylammoniumperchlorat, ≥95.0% (T)
Supelco
Tetrabutylammoniumbisulfat, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Tetrabutylammoniumcyanid, 95%
Sigma-Aldrich
Tetrabutylammoniumhydroxid -Lösung, technical, ~40% in H2O (~1.5 M)
Sigma-Aldrich
Tetrabutylammoniumiodid, ≥99.0% (AT)
Supelco
Tetrabutylammoniumperchlorat, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Tetrabutylammonium-Azid
Sigma-Aldrich
Tetrabutylammoniumnitrat, 97%
Sigma-Aldrich
Tetrabutylammoniumfluorid -Lösung, 75 wt. % in H2O
Supelco
Tetrabutylammoniumbromid, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Tetrabutylammoniumhydroxid -Lösung, 53.5-56.5% in H2O
Sigma-Aldrich
Tetrabutylammonium-bisulfat -Lösung, ~55% in H2O
Supelco
Tetrabutylammoniumchlorid, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Tetrabutylammoniumbromid, 50 wt. % in H2O
Supelco
Tetrabutylammonium-bisulfat -Lösung, suitable for ion pair chromatography, LiChropur, concentrate, ampule
Sigma-Aldrich
Tetrabutylammoniumcyanid, technical, ≥80%
Supelco
Tetrabutylammoniumiodid, suitable for ion pair chromatography, LiChropur, ≥99.0%