Direkt zum Inhalt
Merck

Dissolution of tablet-in-tablet formulations studied with ATR-FTIR spectroscopic imaging.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2013-01-08)
Patrick S Wray, Graham S Clarke, Sergei G Kazarian
ZUSAMMENFASSUNG

This work uses ATR-FTIR spectroscopic imaging to study the dissolution of delayed release and pH resistant compressed coating pharmaceutical tablets. Tablets with an inner core and outer shell were constructed using a custom designed compaction cell. The core of the delayed release tablets consisted of hydroxypropyl methylcellulose (HPMC) and caffeine. The shell consisted of microcrystalline cellulose (MCC) and glucose. The core of the pH resistant formulations was an ibuprofen and PEG melt and the shell was constructed from HPMC and a basic buffer. UV/vis spectroscopy was used to monitor the lag-time of drug release and visible optical video imaging was used as a complementary imaging technique with a larger field of view. Two delayed release mechanisms were established. For tablets with soluble shell sections, lag-time was dependent upon rapid shell dissolution. For tablets with less soluble shells, the lag-time was controlled by the rate of dissolution medium ingress through the shell and the subsequent expansion of the wet HPMC core. The pH resistant formulations prevented crystallization of the ibuprofen in the core during dissolution despite an acidic dissolution medium. FTIR imaging produced important information about the physical and chemical processes occurring at the interface between tablet sections during dissolution.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methylzellulose, viscosity: 4,000 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~86,000
Sigma-Aldrich
Methylzellulose, viscosity: 1,500 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~10,000
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP
Sigma-Aldrich
Methylzellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Methylzellulose, viscosity: 25 cP
Sigma-Aldrich
Methylzellulose, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
Methylzellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~120,000
Sigma-Aldrich
Methocel® A15 LV, 27.5-31.5% methoxyl basis
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~90,000
Sigma-Aldrich
Methocel® MC, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methylzellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Sigma-Aldrich
Methylzellulose, tested according to Ph. Eur.