Direkt zum Inhalt
Merck

Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.

Biochemistry (2013-11-06)
Christopher A Strulson, Neela H Yennawar, Robert P Rambo, Philip C Bevilacqua
ZUSAMMENFASSUNG

In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Harnstoff, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Harnstoff, ACS reagent, 99.0-100.5%
Supelco
Harnstoff, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Harnstoff -Lösung, BioUltra, ~8 M in H2O
Sigma-Aldrich
Magnesium, powder, ≥99%
Sigma-Aldrich
Harnstoff, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Harnstoff, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
Harnstoff, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Magnesium, purum, for Grignard reactions, ≥99.5%, turnings
Sigma-Aldrich
Magnesium, chips, 6-35 mesh, 99.98% trace metals basis
Sigma-Aldrich
Magnesium, turnings, reagent grade, 98%
Sigma-Aldrich
Harnstoff, suitable for electrophoresis
Sigma-Aldrich
Magnesium, ribbon, ≥99.0% Mg basis
Sigma-Aldrich
Harnstoff, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Harnstoff, meets USP testing specifications
Sigma-Aldrich
Harnstoff, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Magnesium, turnings, 5-25 mm, 99.95% trace metals basis
Sigma-Aldrich
Harnstoff -Lösung, 40 % (w/v) in H2O
Millipore
Harnstoff -Lösung, suitable for microbiology, 40% in H2O
Sigma-Aldrich
Magnesium, 20-230 mesh, reagent grade, 98%
Sigma-Aldrich
Magnesium Zubereitung, Highly Reactive Rieke® Metal, suspension, 2.5 g in THF
Sigma-Aldrich
Magnesium, ReagentPlus®, ribbon, ≥99% trace metals basis
Sigma-Aldrich
Magnesium, wire, 127 μm diameter, 99.9% trace metals basis
Sigma-Aldrich
Magnesium, rod, diam. 6 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Magnesium, grit, ≥99.0% (KT)
Harnstoff, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Magnesium, dendritic pieces, purified by distillation, 99.998% trace metals basis
Sigma-Aldrich
Harnstoff-12C, 99.9 atom % 12C
Sigma-Aldrich
Magnesium (in Sure/Seal Flasche), in a Sure/Seal bottle, turnings, anhydrous tetrahydrofuran 37.5 mmol
Sigma-Aldrich
Magnesium (in Sure/Seal Flasche), in a Sure/Seal bottle, turnings, 37.5 mmol