Direkt zum Inhalt
Merck

Structure and mechanism of Zn2+-transporting P-type ATPases.

Nature (2014-08-19)
Kaituo Wang, Oleg Sitsel, Gabriele Meloni, Henriette Elisabeth Autzen, Magnus Andersson, Tetyana Klymchuk, Anna Marie Nielsen, Douglas C Rees, Poul Nissen, Pontus Gourdon
ZUSAMMENFASSUNG

Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2·Pi) of ZntA from Shigella sonnei, determined at 3.2 Å and 2.7 Å resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2·Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Zink, dust, <10 μm, ≥98%
Sigma-Aldrich
Zink, granular, 20-30 mesh, ACS reagent, ≥99.8%
Sigma-Aldrich
Zink, powder, <150 μm, 99.995% trace metals basis
Sigma-Aldrich
Zink, foil, thickness 0.25 mm, 99.9% trace metals basis
Sigma-Aldrich
Zink, nanopowder, 40-60 nm avg. part. size, ≥99% trace metals basis
Sigma-Aldrich
Blei, powder, −100 mesh, 99.95% trace metals basis
Sigma-Aldrich
Zink, purum, powder
Sigma-Aldrich
Cadmium, granular, 30-80 mesh, ≥99%
Sigma-Aldrich
Cadmium, powder, −100 mesh, 99.5% trace metals basis
Sigma-Aldrich
Zink, granular, 30-100 mesh, 99%
Sigma-Aldrich
Zink, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.9%, granular
Zink, foil, 300x300mm, thickness 0.1mm, as rolled, 99.95+%
Sigma-Aldrich
Cadmium, granular, ≥99%, 5-20 mesh
Sigma-Aldrich
Zink, shot, <12 mm, 99.99% trace metals basis
Sigma-Aldrich
Zink, mossy, ≥99%
Sigma-Aldrich
Blei, shot, <2 mm, 99.9% trace metals basis
Blei, foil, 300x300mm, thickness 0.25mm, as rolled, 99.95%
Sigma-Aldrich
Zink Zubereitung, 5 g/dL Zn2+ in THF, highly reactive Rieke®metal
Sigma-Aldrich
Zink, pieces, 2-14 mesh, 99.9% trace metals basis
Zink, wire reel, 5m, diameter 1.0mm, 99.99+%
Sigma-Aldrich
Blei, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Zink, sticks, diam. 7-10 mm, 99.97% trace metals basis
Sigma-Aldrich
Zink, wire, diam. 1.0 mm, 99.995% trace metals basis
Sigma-Aldrich
Adenosine 5′-Triphosphatase from porcine cerebral cortex, lyophilized powder, ≥0.3 units/mg protein, pH 7.8
Sigma-Aldrich
Blei, shot, 1-3 mm, 99.995% trace metals basis
Sigma-Aldrich
Zink, foil, thickness 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Zink, shot, 5 mm, 99.999% trace metals basis
Sigma-Aldrich
Cadmium, shot, 3 mm, 99.999% trace metals basis
Cadmium, foil, 100x100mm, thickness 1.0mm, as rolled, 99.99%
Blei, rod, 100mm, diameter 19.0mm, 99.95%