Direkt zum Inhalt
Merck
  • Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

Biomaterials (2015-03-31)
Elaine Quinlan, Sonia Partap, Maria M Azevedo, Gavin Jell, Molly M Stevens, Fergal J O'Brien
ZUSAMMENFASSUNG

One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (>97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
N-Hydroxysuccinimid, 98%
Sigma-Aldrich
Salzsäure -Lösung, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Salzsäure, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Salzsäure, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Chlorwasserstoff -Lösung, 2.0 M in diethyl ether
Sigma-Aldrich
Salzsäure, 36.5-38.0%, BioReagent, Molecular Biology
Supelco
Salzsäure -Lösung, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Chlorwasserstoff -Lösung, 1.0 M in diethyl ether
Sigma-Aldrich
Salzsäure -Lösung, for amino acid analysis, ~6 M in H2O
Sigma-Aldrich
Essigsäure, suitable for luminescence, BioUltra, ≥99.5% (GC)
USP
Eisessig, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Chlorwasserstoff, ReagentPlus®, ≥99%
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, ≥97.5%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 3 M in cyclopentyl methyl ether (CPME)
Supelco
Chlorwasserstoff – Methanol -Lösung, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
Essigsäure, analytical standard
Sigma-Aldrich
Salzsäure -Lösung, 32 wt. % in H2O, FCC
Sigma-Aldrich
Essigsäure, ≥99.5%, FCC, FG
Sigma-Aldrich
Essigsäure, natural, ≥99.5%, FG
Sigma-Aldrich
Chlorwasserstoff -Lösung, 1.0 M in acetic acid
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
N-Hydroxysuccinimid, purum, ≥97.0% (T)
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, purum, ≥99.0% (TLC)