Direkt zum Inhalt
Merck
  • Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase.

Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase.

Electrophoresis (2014-09-27)
Azza H Rageh, Ute Pyell
ZUSAMMENFASSUNG

In this work, we extend our investigations regarding the separation of urinary nucleosides by MEKC with the ionic liquid type surfactant 1-tetradecyl-3-methylimidazolium bromide (C14MImBr). We study the impact of adding alkyl- and arylboronic acids (in the presence of C14MImBr micelles) to the separation of these highly hydrophilic metabolites and investigate the mechanism of interaction between the negatively charged nucleosides (the negative charge is acquired either due to deprotonation of the amidic group and/or complexation with boronate) and the positively charged pseudostationary phase. This interaction is not only due to electrostatic (Coulombic) forces, but also due to hydrophobic interaction of the alkyl or aryl group of the boronate that forms a complex with the cis-diol group of the nucleoside. In this case, alkylboronates can act as a cosurfactant that increases the partitioning coefficient of the analytes into the micelles. In the presence of an alkylboronate in the BGE (employing only 20 mmol/L C14MImBr), the retention factors of the studied analytes are increased considerably when compared to a BGE without this additive. It is shown that the concept of one-site hydrophobically assisted ion exchange can be applied to describe the observed retention behavior. The high selectivity of boronates toward cis-diol-containing compounds can be used to adjust selectively the migration behavior of members of this compound class. By adding alkylboronic acid to the BGE, the separation selectivity is fine-tuned so that interferences from matrix components can be avoided in real sample analysis.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Natriumdodecylsulfat, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Borsäure, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Natriumdodecylsulfat, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Natriumdodecylsulfat, ACS reagent, ≥99.0%
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Borsäure, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Natriumdodecylsulfat, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Borsäure, BioReagent, Molecular Biology, suitable for cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Natriumphosphat, dreibasisch Dodecahydrat, ACS reagent, ≥98%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Natriumdodecylsulfat, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, 20% in H2O
Sigma-Aldrich
Natronlauge, 5.0 M
Sigma-Aldrich
Methanol, Absolute - Acetone free