Direkt zum Inhalt
Merck
  • Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient.

Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient.

Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society (2015-12-25)
Sonia Lefnaoui, Nadji Moulai-Mostefa
ZUSAMMENFASSUNG

A pregelatinized starch (PGS) was derivatized with sodium chloroacetate (SCA) in alcoholic medium under alkaline condition to produce carboxymethyl pregelatinized starch (CMPGS) with various degrees of substitution (DS). Influence of the molar ratio of SCA to the glucopyranose units (SCA/GU), reaction time, temperature and the amount of sodium hydroxide on the degree of substitution (DS) and the reaction efficiency (RE) was studied. An optimal concentration of 30% of NaOH, for a reaction time of 1 h at 50 °C and molar ratio (SCA/GU) equal to 1.0, yielded an optimal DS of 0.55 and a RE of 55%. SEM micrographs revealed that the carboxymethylation assigned the structural arrangement of CMPGS and caused the granular disintegration. Wide angle diffraction X-ray (XRD) showed that the crystallinity of starch was obviously varied after carboxymethylation. New bands in FTIR spectra at 1417 and 1603 cm(-1) indicated the presence of carboxymethyl groups. The solubility and viscosity of CMPGS increased with an increase in the degree of modification. In order to investigate the influence of DS on physical and drug release properties, CMPGS obtained with DS in the range of 0.12-0.55 was evaluated as tablet excipient for sustained drug release. Dissolution tests performed in phosphate buffer (pH 6.8), with Ibuprofen as drug model (25% loading) showed that CMPGS seems suitable to be used as sustained release excipient since the drug release was driven over a period up to 8 h. The in vitro release kinetics studies revealed that all formulations fit well with Korsmeyer-Peppas model and the mechanism of drug release is non-Fickian diffusion.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
Kaliumbromid, ≥99% trace metals basis
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Isopropylalkohol, meets USP testing specifications
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Salzsäure -Lösung, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Kaliumbromid, ACS reagent, ≥99.0%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Salzsäure, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Salzsäure, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 2.0 M in diethyl ether
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%