Direkt zum Inhalt
Merck

Alum and Rainfall Effects on Ionophores in Runoff from Surface-Applied Broiler Litter.

Journal of environmental quality (2015-10-06)
Sarah A Doydora, Dorcas Franklin, Peizhe Sun, Miguel Cabrera, Aaron Thompson, Kimberly Love-Myers, John Rema, Vaughn Calvert, Spyros G Pavlostathis, Ching-Hua Huang
ZUSAMMENFASSUNG

Polyether ionophores, monensin, and salinomycin are commonly used as antiparasitic drugs in broiler production and may be present in broiler litter (bird excreta plus bedding material). Long-term application of broiler litter to pastures may lead to ionophore contamination of surface waters. Because polyether ionophores break down at low pH, we hypothesized that decreasing litter pH with an acidic material such as aluminum sulfate (alum) would reduce ionophore losses to runoff (i.e., monensin and salinomycin concentrations, loads, or amounts lost). We quantified ionophore loss to runoff in response to (i) addition of alum to broiler litter and (ii) length of time between litter application and the first simulated rainfall event. The factorial experiment consisted of unamended (∼pH 9) vs. alum-amended litters (∼pH 6), each combined with simulated rainfall at 0, 2, or 4 wk after litter application. Runoff from alum-amended broiler litter had 33% lower monensin concentration ( < 0.01), 57% lower monensin load ( < 0.01), 48% lower salinomycin concentration ( < 0.01), and 66% lower salinomycin load ( < 0.01) than runoff from unamended broiler litter when averaged across all events of rainfall. Ionophore losses to runoff were also less when rainfall was delayed for 2 or 4 wk after litter application relative to applying rainfall immediately after litter application. While the weather is difficult to predict, our data suggest that ionophore losses in runoff can be reduced if broiler litter applications are made to maximize dry time after application.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Natronlauge, 5.0 M
Sigma-Aldrich
Natriumhydroxid, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
L-Lysin -monohydrochlorid, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, flakes
Sigma-Aldrich
Natriumhydroxid, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Natriumhydroxid, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
L-Lysin -monohydrochlorid, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Lysin -monohydrochlorid, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Natriumhydroxid, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
3-Ethyl-2,4-pentandion, Tautormermischung, 98%
Sigma-Aldrich
Natriumhydroxid-16O -Lösung, 20 wt. % in H216O, 99.9 atom % 16O