Direkt zum Inhalt
Merck

E2F-7 couples DNA damage-dependent transcription with the DNA repair process.

Cell cycle (Georgetown, Tex.) (2013-08-27)
Lykourgos-Panagiotis Zalmas, Amanda S Coutts, Thomas Helleday, Nicholas B La Thangue
ZUSAMMENFASSUNG

The cellular response to DNA damage, mediated by the DNA repair process, is essential in maintaining the integrity and stability of the genome. E2F-7 is an atypical member of the E2F family with a role in negatively regulating transcription and cell cycle progression under DNA damage. Surprisingly, we found that E2F-7 makes a transcription-independent contribution to the DNA repair process, which involves E2F-7 locating to and binding damaged DNA. Further, E2F-7 recruits CtBP and HDAC to the damaged DNA, altering the local chromatin environment of the DNA lesion. Importantly, the E2F-7 gene is a target for somatic mutation in human cancer and tumor-derived mutant alleles encode proteins with compromised transcription and DNA repair properties. Our results establish that E2F-7 participates in 2 closely linked processes, allowing it to directly couple the expression of genes involved in the DNA damage response with the DNA repair machinery, which has relevance in human malignancy.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-phospho-Histon H2A.X (Ser139)-Antikörper, Klon JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
GeneJuice® Transfektionsreagens, Non-lipid based chemical transfection reagent optimized for maximum transfection efficiency, ease-of-use, and minimal cytotoxicity on a wide variety of mammalian cells.
Sigma-Aldrich
Monoklonaler Anti-polyhistidin-Antikörper in Maus hergestellte Antikörper, clone HIS-1, ascites fluid
Sigma-Aldrich
Anti-Acetyl-Histon-H3-Antikörper, from rabbit
Sigma-Aldrich
Anti-Trimethyl-Histon-H3(Lys9)-Antikörper, Upstate®, from rabbit