Skip to Content
Merck
  • Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin.

Isolation and characterization of rat intestinal bacteria involved in biotransformation of (-)-epigallocatechin.

Archives of microbiology (2014-06-21)
Akiko Takagaki, Yuko Kato, Fumio Nanjo
ABSTRACT

Two intestinal bacterial strains MT4s-5 and MT42 involved in the degradation of (-)-epigallocatechin (EGC) were isolated from rat feces. Strain MT4s-5 was tentatively identified as Adlercreutzia equolifaciens. This strain converted EGC into not only 1-(3, 4, 5-trihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (1), but also 1-(3, 5-dihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (2), and 4'-dehydroxylated EGC (7). Type strain (JCM 9979) of Eggerthella lenta was also found to convert EGC into 1. Strain MT42 was identified as Flavonifractor plautii and converted 1 into 4-hydroxy-5-(3, 4, 5-trihydroxyphenyl)valeric acid (3) and 5-(3, 4, 5-trihydroxyphenyl)-γ-valerolactone (4) simultaneously. Strain MT42 also converted 2 into 4-hydroxy-5-(3, 5-dihydroxyphenyl)valeric acid (5), and 5-(3, 5-dihydroxyphenyl)-γ-valerolactone (6). Furthermore, F. plautii strains ATCC 29863 and ATCC 49531 were found to catalyze the same reactions as strain MT42. Interestingly, formation of 2 from EGC by strain MT4s-5 occurred rapidly in the presence of hydrogen supplied by syntrophic bacteria. Strain JCM 9979 also formed 2 in the presence of the hydrogen or formate. Strain MT4s-5 converted 1, 3, and 4 to 2, 5, and 6, respectively, and the conversion was stimulated by hydrogen, whereas strain JCM 9979 could catalyze the conversion only in the presence of hydrogen or formate. On the basis of the above results together with previous reports, the principal metabolic pathway of EGC and EGCg by catechin-degrading bacteria in gut tract is proposed.

MATERIALS
Product Number
Brand
Product Description

Millipore
Bifido Selective Supplement B, suitable for microbiology
Supelco
(+)-Catechin, analytical standard
Sigma-Aldrich
γ-Valerolactone, ReagentPlus®, 99%
Sigma-Aldrich
γ-Valerolactone, ≥99%, FCC, FG
Sigma-Aldrich
Valeric acid, ≥99%, FCC, FG
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Valeric acid, ≥99%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥80% (HPLC), from green tea
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥95%
Supelco
Valeric acid, analytical standard
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
γ-Valerolactone, natural, ≥95%, FG
Epigallocatechin gallate, primary reference standard
Supelco
(−)-Epigallocatechin gallate, analytical standard
Supelco
Epigallocatechin gallate, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
(−)-Gallocatechin, ≥98% (HPLC)
Sigma-Aldrich
(−)-Epicatechin, ≥90% (HPLC)
Sigma-Aldrich
(−)-Epicatechin, ≥98% (HPLC), from green tea
Supelco
(−)-Gallocatechin, analytical standard
Sigma-Aldrich
Methanol-d4, "100%", ≥99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Supelco
(−)-Epicatechin, analytical standard
Sigma-Aldrich
Methanol-d4, ≥99.8 atom % D, contains 0.05 % (v/v) TMS
Sigma-Aldrich
Methanol-d4, anhydrous, ≥99.8 atom % D
Sigma-Aldrich
Methanol-d4, ≥99.8 atom % D
Sigma-Aldrich
Methanol-d4, ≥99.8 atom % D
Sigma-Aldrich
Methanol-d4, ≥99.8 atom % D, contains 0.1 % (v/v) TMS
Sigma-Aldrich
Methanol-d4, 99 atom % D