Saltar al contenido
Merck

NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration.

Developmental cell (2019-12-24)
Rashmi Mishra, Ivonne Sehring, Maria Cederlund, Medhanie Mulaw, Gilbert Weidinger
RESUMEN

Dedifferentiation of mature cells is an intriguing cellular process associated with regeneration of several organs. During zebrafish fin regeneration, osteoblasts dedifferentiate to osteogenic progenitors that provide source cells for bone restoration. We performed a high-content in vivo chemical screen for regulators of osteoblast dedifferentiation and fin regenerative growth. NF-κB signaling emerged as a specific regulator of dedifferentiation. The pathway is active in mature osteoblasts and downregulated prior to dedifferentiation. Pathway activation blocked osteoblast dedifferentiation, while NF-κB signaling inhibition enhanced dedifferentiation. Conditional Cre-lox-mediated NF-κB signaling manipulation specifically in osteoblasts showed that the pathway acts cell autonomously to interfere with osteoblast dedifferentiation. NF-κB signaling acts upstream of retinoic acid (RA) signaling, which also needs to be downregulated for dedifferentiation to occur, via suppression of the RA-degrading enzyme cyp26b1. Our findings shed light on the molecular regulation of regenerative cellular plasticity.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Forbol 12-miristato 13-acetato, ≥99% (TLC), film or powder
Roche
Anti-digoxigenina-AP, Fragmentos Fab, from sheep
Sigma-Aldrich
JSH-23, ≥98% (HPLC), solid
Sigma-Aldrich
Bay 11-7085, ≥98% (HPLC), solid
Supelco
Chlorpropamide, analytical standard, ≥97%
Sigma-Aldrich
R115866, ≥98% (HPLC)
Sigma-Aldrich
Prostaglandin B2, ≥98%, synthetic