Saltar al contenido
Merck
  • Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery.

Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery.

Journal of proteome research (2014-12-09)
Yaping Shao, Bin Zhu, Ruiyin Zheng, Xinjie Zhao, Peiyuan Yin, Xin Lu, Binghua Jiao, Guowang Xu, Zhenzhen Yao
RESUMEN

Hepatocellular carcinoma (HCC) is one of the pestilent malignancies leading to cancer-related death. Discovering effective biomarkers for HCC diagnosis is an urgent demand. To identify potential metabolite biomarkers, we developed a urinary pseudotargeted method based on liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (LC-QTRAP MS). Compared with nontargeted method, the pseudotargeted method can achieve better data quality, which benefits differential metabolites discovery. The established method was applied to cirrhosis (CIR) and HCC investigation. It was found that urinary nucleosides, bile acids, citric acid, and several amino acids were significantly changed in liver disease groups compared with the controls, featuring the dysregulation of purine metabolism, energy metabolism, and amino metabolism in liver diseases. Furthermore, some metabolites such as cyclic adenosine monophosphate, glutamine, and short- and medium-chain acylcarnitines were the differential metabolites of HCC and CIR. On the basis of binary logistic regression, butyrylcarnitine (carnitine C4:0) and hydantoin-5-propionic acid were defined as combinational markers to distinguish HCC from CIR. The area under curve was 0.786 and 0.773 for discovery stage and validation stage samples, respectively. These data show that the established pseudotargeted method is a complementary one of targeted and nontargeted methods for metabolomics study.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, Absolute - Acetone free
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Creatinine, anhydrous, ≥98%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Supelco
Metanol, analytical standard
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ácido fórmico, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitrilo, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrilo, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrilo, analytical standard
Sigma-Aldrich
Acetonitrilo, ReagentPlus®, 99%
Supelco
Creatinine, Pharmaceutical Secondary Standard; Certified Reference Material