Saltar al contenido
Merck

Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane.

Biochimica et biophysica acta (2015-01-21)
Gota Cho, Aneta M Bragiel, Di Wang, Tomasz D Pieczonka, Mariusz T Skowronski, Masayuki Shono, Søren Nielsen, Yasuko Ishikawa
RESUMEN

The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformo, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Cloroformo, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Cloroformo, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformo, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Hexano, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexano, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexano, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Yoduro de propidio, ≥94.0% (HPLC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Cloroformo, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Hexano, Laboratory Reagent, ≥95%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Cloroformo, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Cloroformo, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Cloroformo, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Cloroformo, anhydrous, contains amylenes as stabilizer, ≥99%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Cloroformo, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Supelco
Metanol, analytical standard
Supelco
Hexano, analytical standard
Sigma-Aldrich
Propidium iodide solution
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Cloroformo, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer