Saltar al contenido
Merck
  • Comparative analysis of bacterial community composition in bulk tank raw milk by culture-dependent and culture-independent methods using the viability dye propidium monoazide.

Comparative analysis of bacterial community composition in bulk tank raw milk by culture-dependent and culture-independent methods using the viability dye propidium monoazide.

Journal of dairy science (2014-09-23)
Mareike Weber, Janina Geißert, Myriam Kruse, André Lipski
RESUMEN

Microbial diversity of 3 raw milk samples after 72 h of storage at 4 °C in a bulk tank was analyzed by culture-dependent and -independent methods. The culture-dependent approach was based on the isolation of bacteria on complex and selective media, chemotaxonomic differentiation of isolates, and subsequent identification by 16S rRNA gene sequencing. The culture-independent approach included the treatment of raw milk with the dye propidium monoazide before direct DNA extraction by mechanic and enzymatic cell lysis approaches, and cloning and sequencing of the 16S rRNA genes. The selective detection of viable bacteria improved the comparability between bacterial compositions of raw milk based on culture-dependent and -independent methods, which was the major objective of this study. Several bacterial species of the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were detected by the culture-dependent method, whereas mainly bacteria of the phylum Proteobacteria as well as low proportions of the phyla Bacteroidetes and Actinobacteria were detected by the culture-independent method. This led to the conclusion that the phylum Firmicutes was strongly discriminated by the culture-independent approach. Generally, species richness detected by the culture-dependent method was higher than that detected by the culture-independent method for all samples. However, few taxa could be detected solely by the direct DNA-based method. In conclusion, the combination of culture-dependent and -independent methods led to the detection of the highest bacterial diversity for the raw milk samples analyzed. It was shown that DNA extraction from raw milk as the essential step in culture-independent methods causes the discrimination of taxa by incomplete cell lysis. Treatment of raw milk with the viability dye propidium monoazide was optimized for the application in raw milk without former removal of milk ingredients and proved to be a suitable tool to ensure comparability of bacterial diversity depicted by both methods.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Dimetilsulfóxido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, Molecular Biology
Sigma-Aldrich
Dimetilsulfóxido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimetilsulfóxido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimetilsulfóxido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Dimetilsulfóxido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Etanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Dimetilsulfóxido, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥97%
Sigma-Aldrich
L-Alanine, ≥98% (TLC)
Sigma-Aldrich
Dimetilsulfóxido, meets EP testing specifications, meets USP testing specifications
Supelco
Etanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
Etanol, standard for GC
Sigma-Aldrich
Dimethyl disulfide, ≥99.0%
Sigma-Aldrich
L-Alanine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Dimetilsulfóxido, PCR Reagent
Sigma-Aldrich
L-Alanine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Etanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Etanol
Sigma-Aldrich
Etanol, tested according to Ph. Eur.
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
L-Alanine, ≥99%
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)