Saltar al contenido
Merck
  • Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

Physiological and molecular responses of the goldfish (Carassius auratus) kidney to metabolic acidosis, and potential mechanisms of renal ammonia transport.

The Journal of experimental biology (2015-05-20)
Michael J Lawrence, Patricia A Wright, Chris M Wood
RESUMEN

Relative to the gills, the mechanisms by which the kidney contributes to ammonia and acid-base homeostasis in fish are poorly understood. Goldfish were exposed to a low pH environment (pH 4.0, 48 h), which induced a characteristic metabolic acidosis and an increase in total plasma [ammonia] but reduced plasma ammonia partial pressure (PNH3). In the kidney tissue, total ammonia, lactate and intracellular pH remained unchanged. The urinary excretion rate of net base under control conditions changed to net acid excretion under low pH, with contributions from both the NH4 (+) (∼30%) and titratable acidity minus bicarbonate (∼70%; TA-HCO3 (-)) components. Inorganic phosphate (Pi), urea and Na(+) excretion rates were also elevated while Cl(-) excretion rates were unchanged. Renal alanine aminotransferase activity increased under acidosis. The increase in renal ammonia excretion was due to significant increases in both the glomerular filtration and the tubular secretion rates of ammonia, with the latter accounting for ∼75% of the increase. There was also a 3.5-fold increase in the mRNA expression of renal Rhcg-b (Rhcg1) mRNA. There was no relationship between ammonia secretion and Na(+) reabsorption. These data indicate that increased renal ammonia secretion during acidosis is probably mediated through Rhesus (Rh) glycoproteins and occurs independently of Na(+) transport, in contrast to branchial and epidermal models of Na(+)-dependent ammonia transport in freshwater fish. Rather, we propose a model of parallel H(+)/NH3 transport as the primary mechanism of renal tubular ammonia secretion that is dependent on renal amino acid catabolism.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Sacarosa, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosa, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Imidazol, ReagentPlus®, 99%
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarosa, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Imidazol, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Dextrosa, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, Molecular Biology, ≥97.0%
Sigma-Aldrich
Imidazol, Molecular Biology, ≥99% (titration)
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Sacarosa, ACS reagent
Sigma-Aldrich
Imidazol, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
D-(+)-Glucosa, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O
Sigma-Aldrich
D-(+)-Glucosa, ACS reagent
Sigma-Aldrich
Imidazol, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Ammonia solution, 4 M in methanol
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Ammonia solution, 0.4 M in THF
Sigma-Aldrich
Carbonato de calcio, powder, ≤50 μm particle size, 98%