Saltar al contenido
Merck

Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling.

Nanoscale (2015-05-28)
Zdeněk Sofer, Ondřej Jankovský, Alena Libánská, Petr Šimek, Michal Nováček, David Sedmidubský, Anna Macková, Romana Mikšová, Martin Pumera
RESUMEN

Graphane is one of the most intensively studied derivatives of graphene. Here we demonstrate the evaluation of exact degree of graphene hydrogenation using the Clemmensen reduction reaction and deuterium labeling. The Clemmensen reduction reaction is based on application of zinc in an acid environment. It effectively reduces various functional groups (like ketones) present in graphite oxide. However, the mechanism of reduction is still unknown and elusive. Here we bring a major insight into the mechanisms of the Clemmensen reduction via deuterium labeling and the topochemical approach applied on graphite oxide. The use of deuterated reactants and the exact measurement of deuterium concentration in reduced/hydrogenated graphene by nuclear methods can be used for accurate estimation of C-H bond abundance in graphene. Various topochemical configurations of experiments showed that the reduction of a ketonic group proceeds in contact with the zinc metal by a carbenoid mechanism. Our results showed that the application of nuclear methods of isotope analysis in combination with deuterium labeling represents a very effective tool for investigation of graphene based materials. Our results demonstrate that graphene based materials can also be effectively used for the investigation of organic reaction mechanisms, because the robust structure of graphene allows the use of various spectroscopic techniques which could not be applied on small organic molecules.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D
Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Ácido nítrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido sulfúrico, 99.999%
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
N,N-Dimetilformamida, Molecular Biology, ≥99%
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Cloruro de hidrógeno solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Sigma-Aldrich
Ácido nítrico, ACS reagent, ≥90.0%
Sigma-Aldrich
Ácido clorhídrico solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Sodium nitrate, 99.995% trace metals basis
Sigma-Aldrich
Óxido de deuterio, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium, 99.8 atom % D
Sigma-Aldrich
Barium nitrate, 99.999% trace metals basis
Sigma-Aldrich
Óxido de deuterio, 99.8 atom % D
Sigma-Aldrich
Óxido de deuterio, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
Sodium nitrate, ≥99.0%, suitable for plant cell culture
Sigma-Aldrich
Deuterium, 99.9 atom % D
Sigma-Aldrich
Sodium nitrate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Óxido de deuterio, 70 atom % D
Sigma-Aldrich
Sodium nitrate, BioXtra, ≥99.0%
Sigma-Aldrich
Deuterium hydride, extent of labeling: 96 mol% DH, 98 atom % D
Sigma-Aldrich
Óxido de deuterio, 60 atom % D
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Sodium nitrate-14N, 99.95 atom % 14N