Saltar al contenido
Merck

Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection.

Journal of biomedical science (2015-11-18)
Chih-Lun Cheng, Shin-Jie Huang, Chih-Lu Wu, Hong-Yi Gong, Chuian-Fu Ken, Shao-Yang Hu, Jen-Leih Wu
RESUMEN

Highly desaturated n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are synthesized by desaturases and elongase. They exert hepatoprotective effects to prevent alcoholic fatty liver syndrome or cholestatic liver injury. However, it is unclear how n-3 PUFAs improve immune function in liver. Vibrio vulnificus, a gram-negative bacterial pathogen, causes high mortality of aquaculture fishes upon infection. Humans can become infected with V. vulnificus through open wounds or by eating raw seafood, and such infections may result in systemic septicemia. Moreover, patients with liver diseases are vulnerable to infection, and are more likely than healthy persons to present with liver inflammation following infection. This study quantified n-3 PUFAs and their anti-bacterial effects in Fadsd6 and Elvol5a transgenic zebrafish. Two transgenic zebrafish strains with strong liver specific expression of Fadsd6 and Elvol5a (driven by the zebrafish Fabp10 promoter) were established using the Tol2 system. Synthesis of n-3 PUFAs in these strains were increased by 2.5-fold as compared to wild type (Wt) fish. The survival rate in 24 h following challenge with V. vulnificus was 20 % in Wt, but 70 % in the transgenic strains. In addition, the bacteria counts in transgenic fish strains were significantly decreased. The expression levels of pro-inflammatory genes, such as TNF-α, IL-1β, and NF-κB, were suppressed between 9 and 12 h after challenge. This study confirms the anti-bacterial function of n-3 PUFAs in a transgenic zebrafish model. Fadsd6 and Elvol5a transgenic zebrafish are more resistant to V. vulnificus infection, and enhance survival by diminishing the attendant inflammatory response.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Dietiléter, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Cloroformo, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Sacarosa, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Cloruro de hidrógeno solution, 4.0 M in dioxane
Sigma-Aldrich
Cloroformo, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Hexano, ReagentPlus®, ≥99%
Sigma-Aldrich
Dietiléter, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Formaldehído solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Cloruro de sodio, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarosa, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Formaldehído solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
SAFC
Formaldehído solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ácido clorhídrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Ácido clorhídrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Cloruro de hidrógeno solution, 2.0 M in diethyl ether