氧化石墨烯和还原氧化石墨烯的应用

Avery Luedtke, 博士

MilliporeSigma, Milwaukee, WI

简介

氧化石墨烯(GO,产品编号:763705和777676)是一种独特的材料,可以看做连接有多种氧基官能团的单分子层石墨,官能团包括环氧基、碳基、羧基和羟基。1,2,3当一种单层石墨——石墨烯,被首次分离和研究后,GO受到的关注显著增加。4最初研究者希望GO可以成为石墨烯的合成前体。5 当绝缘的GO被还原后,得到的还原氧化石墨烯(GO,产品编号:777684)类似于石墨烯,但含有残余的氧和其他杂原子,并且具有结构上的缺陷。6,7合成出更接近原始的石墨烯的rGO,是本领域内的一项极具创意的挑战。虽然如此,由于rGO可以由GO的水分散溶液制成薄片,并具有适度的导电性,将其用于电子设备是极具吸引力的。8,9,10,11,12除了作为电子设备的组件之外,GO和rGO也被用于纳米复合材料13,14、聚合物复合材料13、能量存储14、 生物医学15,16,17、催化剂18,19,20 和表面活性剂21,这些领域之间存在一定程度重叠。

GO的合成和还原

目前大部分GO的合成工艺都基于Hummers最先发表的方法,即使用高锰酸钾硫酸溶液氧化石墨。22有报道称可以使用肼还原GO,5 但是,肼具有强毒性并可能使GO连接上氮基杂原子官能团。23因此,NaBH4、NaBH414、抗坏血酸24、24 HI25,26和其他物质可替代肼用于GO的还原。GO可以以薄片或者水溶液的形式被还原。还原的方法近期已有回顾。6

电子设备

已有多种电子设备使用GO作为其至少一种组件的原始材料。其中一种设备是石墨烯制成的场效应晶体管(GFET)。27,28采用rGO的场效应晶体管(FET)已经被用作化学传感器29,30,31和生物传感器。图1即为一种GFET传感器的示意图。31使用官能化rGO作为半导体的GFET 已被用作生物传感器,用于检测激素儿茶酚胺分子32、抗生物素蛋白33、和DNA34。在其他研究中,葡萄糖氧化酶官能化的GO被沉积在电极上用作电化学葡萄糖传感器。35

可见光透明电极对于发光二极管(LED)和太阳能电池设备都很重要。由于GO可被制成溶液,相对于其它透明电极例如ITO,在这些设备中使用rGO作为透明电极更加方便。36,37除了透明电极外,rGO还被用作聚合太阳能电池和LED的空穴传输层。38,39

GFET传感器

图 1.(a) Si/SiO2 衬底上的典型的背栅结构GFET,可用作气体传感器。(b) 柔性聚对苯二甲酸乙二醇酯(PET)衬底上的典型的液体栅结构GFET,可作为化学和生物传感器,用于水溶液中。经法国国家科学研究中心(CNRS)和英国皇家化学学会许可,转载自参考文献31。

能量存储

纳米复合rGO材料已经被用于锂电子电池中的大容量能量存储。研究发现,电绝缘的金纳米属氧化颗粒被吸附到rGO上后可以提高这些材料在电池中的性能。40,41,42,43,44例如,与纯的Fe3O4或Fe2O3相比,将Fe3O4吸附到rGO上可以提高其储能容量和循环稳定性(图2)。43使用微波法可以剥离和还原GO得到大表面积的rGO, 后者可用作超级电容器中的储能材料。45,46

储能能力和循环稳定性

图 2.(a) GNS/Fe3O4复合物的放电/充电曲线。(b) 商业化Fe3O4颗粒、GNS/Fe3O4复合物和未改性Fe2O3颗粒在电流密度为35 mA/g下的循环性能曲线,实心符号表示放电,空心符号表示充电。(c) GNS/Fe3O4复合物在电流密度为700 mA/g下循环100次的循环性能曲线。(d) 商业化Fe3O4颗粒、GNS/Fe3O4复合物和未改性Fe2O3颗粒在不同的电流密度下的充放电速度性能曲线。GNS = rGO。授权转载自参考文献43。2010美国化学学会版权所有。

生物医学应用

GO在生物医学领域的一项应用是作为药物传输系统的一个组成部分。  官能化纳米氧化石墨烯(nGO,品编号:795534)已经用于抗癌药物靶向传输的多个研究中。SN38 — 一种喜树碱(产品编号:H0165)衍生物可吸附在聚乙二醇(PEG)官能化的nGO表面上,形成nGO‒PEG‒SN38,以提高药物在水和血清中的溶解性。47该研究显示,在降低人结肠癌细胞系HTC-116的细胞活力方面,相较于伊立替康(CPT-11)——一种FDA认证的SN38前体药物,nGO‒PEG‒SN38的有效性提高了三个数量级(图3)。47图3所示,nGO‒PEG‒SN38的有效性与DMSO中的SN38相似。47PEG和透明质酸官能化的nGO经皮传输并配合近红外激光,可用于小鼠黑色素瘤皮肤癌的光热消融治疗。48在一项单独的研究中,磁铁矿被吸附到装载有抗癌药物盐酸阿霉素(DXR,产品编号:D1515和44583)的GO上,继而用磁铁使得药物可以被靶向运输到特定部位。49

细胞体外毒性试验

图 3.细胞体外毒性试验。(a) HCT-116细胞在不同浓度CPT-11、SN38和NGO‒PEG‒SN38中培养72小时的细胞相对活性曲线(相对于未处理对照品)。游离的SN38被溶解于DMSO中并用PBS稀释。水溶性的NGO-PEG-SN38显示出与SN38在DMSO中相似的毒性,并且效能远高于CPT-11。(b) HCT-116细胞在吸附(红色)或者未吸附(黑色)SN38的nGO-PEG中培养后的细胞相对活性数据。普通的NGO-PEG即使在很高浓度下也未显示有明显的毒性。误差线基于三次重复试验。NGO = nGO。授权转载自参考文献47。2008美国化学学会版权所有。

生物传感器

GO和rGO已用于若干检测生物相关分子的系统中。由于具有荧光共振能量转移(FRET)特性,GO已用作生物传感器中的荧光猝灭材料。在Lu等进行的一项研究中发现,具有荧光标记的单链DNA(ssDNA)与GO非共价结合,随后荧光标记淬灭。50 添加互补的ssDNA以移除GO表面被标记的DNA之后,荧光恢复。利用其FRET特性,还可以与荧光标记的ATP适配子联合,以检测出低至10 μM的ATP。51叶酸官能化的GO被用于检测人宫颈癌和人乳腺癌细胞。52

我们提供高品质氧化石墨烯产品以满足您对创新和先进材料的研究需求。有关我们的石墨烯和氧化石墨烯产品列表,请访问 sigmaaldrich.com/graphene。此外,有关我们的高性能碳纳米材料的完整列表,请访问 sigmaaldrich.com/nanocarbons。

材料
Loading

参考文献

1.
Compton OC, Nguyen ST. 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 6(6):711-723. http://dx.doi.org/10.1002/smll.200901934
2.
Mao S, Pu H, Chen J. 2012. Graphene Oxide and its Reduction: Modeling and Experimental Progress. RSC Adv.. 22643.
3.
Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Soc.Rev.. 39(1):228-240. http://dx.doi.org/10.1039/b917103g
4.
Novoselov KS. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science. 306(5696):666-669. http://dx.doi.org/10.1126/science.1102896
5.
Gilje S, Han S, Wang M, Wang KL, Kaner RB. 2007. A Chemical Route to Graphene for Device Applications. Nano Lett.. 7(11):3394-3398. http://dx.doi.org/10.1021/nl0717715
6.
Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc.Rev.. 43(1):291-312. http://dx.doi.org/10.1039/c3cs60303b
7.
Pei S, Cheng H. 2012. The reduction of graphene oxide. Carbon. 50(9):3210-3228. http://dx.doi.org/10.1016/j.carbon.2011.11.010
8.
Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. 2010. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv.Mater.. 22(35):3906-3924. http://dx.doi.org/10.1002/adma.201001068
9.
Chen D, Feng H, Li J. 2012. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev.. 112(11):6027-6053. http://dx.doi.org/10.1021/cr300115g
10.
Wan X, Huang Y, Chen Y. 2012. Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Acc. Chem. Res.. 45(4):598-607. http://dx.doi.org/10.1021/ar200229q
11.
Eda G, Chhowalla M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv.Mater.. 22(22):2392-2415. http://dx.doi.org/10.1002/adma.200903689
12.
Wan X, Long G, Huang L, Chen Y. 2011. Graphene - A Promising Material for Organic Photovoltaic Cells. Adv.Mater.. 23(45):5342-5358. http://dx.doi.org/10.1002/adma.201102735
13.
Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem. Soc.Rev.. 41(2):666-686. http://dx.doi.org/10.1039/c1cs15078b
14.
Lightcap IV, Kamat PV. 2013. Graphitic Design: Prospects of Graphene-Based Nanocomposites for Solar Energy Conversion, Storage, and Sensing. Acc. Chem. Res.. 46(10):2235-2243. http://dx.doi.org/10.1021/ar300248f
15.
Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. 2008. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.. 1(3):203-212. http://dx.doi.org/10.1007/s12274-008-8021-8
16.
Chung C, Kim Y, Shin D, Ryoo S, Hong BH, Min D. 2013. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res.. 46(10):2211-2224. http://dx.doi.org/10.1021/ar300159f
17.
Wang Y, Li Z, Wang J, Li J, Lin Y. 2011. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology. 29(5):205-212. http://dx.doi.org/10.1016/j.tibtech.2011.01.008
18.
Pyun J. 2011. Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angew.Chem. Int. Ed.. 50(1):46-48. http://dx.doi.org/10.1002/anie.201003897
19.
Yeh T, Syu J, Cheng C, Chang T, Teng H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Adv.Funct.Mater.. 20(14):2255-2262. http://dx.doi.org/10.1002/adfm.201000274
20.
Dreyer D, Jia H, Bielawski C. 2010. Inside Cover: Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions (Angew.Chem. Int. Ed.38/2010). Angewandte Chemie International Edition. 49(38):6686-6686. http://dx.doi.org/10.1002/anie.201003238
21.
Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. 2010. Graphene Oxide Sheets at Interfaces. J. Am. Chem. Soc.. 132(23):8180-8186. http://dx.doi.org/10.1021/ja102777p
22.
Hummers WS, Offeman RE. 1958. Preparation of Graphitic Oxide. J. Am. Chem. Soc.. 80(6):1339-1339. http://dx.doi.org/10.1021/ja01539a017
23.
Shin H, Kim KK, Benayad A, Yoon S, Park HK, Jung I, Jin MH, Jeong H, Kim JM, Choi J, et al. 2009. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv.Funct.Mater.. 19(12):1987-1992. http://dx.doi.org/10.1002/adfm.200900167
24.
Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD. 2010. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys.Chem. C. 114(14):6426-6432. http://dx.doi.org/10.1021/jp100603h
25.
Moon IK, Lee J, Ruoff RS, Lee H. 2010. Reduced graphene oxide by chemical graphitization. Nat Commun. 1(1): http://dx.doi.org/10.1038/ncomms1067
26.
Pei S, Zhao J, Du J, Ren W, Cheng H. 2010. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 48(15):4466-4474. http://dx.doi.org/10.1016/j.carbon.2010.08.006
27.
Su C, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C, Huang Y, Li L. 2010. Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano. 4(9):5285-5292. http://dx.doi.org/10.1021/nn101691m
28.
Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP. 2010. High Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Lett.. 10(1):92-98. http://dx.doi.org/10.1021/nl9028736
29.
Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J. 2011. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano. 5(2):1154-1164. http://dx.doi.org/10.1021/nn102803q
30.
Chen K, Lu G, Chang J, Mao S, Yu K, Cui S, Chen J. 2012. Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Anal.Chem.. 84(9):4057-4062. http://dx.doi.org/10.1021/ac3000336
31.
He Q, Wu S, Yin Z, Zhang H. 2012. Graphene-based electronic sensors. Chem. Sci.. 3(6):1764. http://dx.doi.org/10.1039/c2sc20205k
32.
He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H. 2010. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano. 4(6):3201-3208. http://dx.doi.org/10.1021/nn100780v
33.
He Q, Wu S, Gao S, Cao X, Yin Z, Li H, Chen P, Zhang H. 2011. Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano. 5(6):5038-5044. http://dx.doi.org/10.1021/nn201118c
34.
Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang G. 2014. Ultrasensitive Label-Free Detection of PNA?DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano. 8(3):2632-2638. http://dx.doi.org/10.1021/nn4063424
35.
Liu Y, Yu D, Zeng C, Miao Z, Dai L. 2010. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir. 26(9):6158-6160. http://dx.doi.org/10.1021/la100886x
36.
Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. 2010. Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano. 4(2):637-642. http://dx.doi.org/10.1021/nn9018569
37.
Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. 2008. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano. 2(3):463-470. http://dx.doi.org/10.1021/nn700375n
38.
Saha SK, Bhaumik S, Maji T, Mandal TK, Pal AJ. Solution-processed reduced graphene oxide in light-emitting diodes and photovoltaic devices with the same pair of active materials. RSC Adv.. 4(67):35493-35499. http://dx.doi.org/10.1039/c4ra03913k
39.
Li S, Tu K, Lin C, Chen C, Chhowalla M. 2010. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells. ACS Nano. 4(6):3169-3174. http://dx.doi.org/10.1021/nn100551j
40.
Wang H, Cui L, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H. 2010. Mn3O4?Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc.. 132(40):13978-13980. http://dx.doi.org/10.1021/ja105296a
41.
Yang S, Feng X, Ivanovici S, Müllen K. 2010. Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage. Angew.Chem. Int. Ed.. 49(45):8408-8411. http://dx.doi.org/10.1002/anie.201003485
42.
Lee JK, Smith KB, Hayner CM, Kung HH. 2010. Silicon nanoparticles?graphene paper composites for Li ion battery anodes. Chem. Commun.. 46(12):2025. http://dx.doi.org/10.1039/b919738a
43.
Zhou G, Wang D, Li F, Zhang L, Li N, Wu Z, Wen L, Lu GQ(, Cheng H. 2010. Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chem. Mater.. 22(18):5306-5313. http://dx.doi.org/10.1021/cm101532x
44.
Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T. 2010. Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J. Mater.Chem.. 20(26):5538. http://dx.doi.org/10.1039/c0jm00638f
45.
Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, et al. 2011. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science. 332(6037):1537-1541. http://dx.doi.org/10.1126/science.1200770
46.
Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. 2010. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon. 48(7):2118-2122. http://dx.doi.org/10.1016/j.carbon.2010.02.001
47.
Liu Z, Robinson JT, Sun X, Dai H. 2008. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc.. 130(33):10876-10877. http://dx.doi.org/10.1021/ja803688x
48.
Jung HS, Kong WH, Sung DK, Lee M, Beack SE, Keum DH, Kim KS, Yun SH, Hahn SK. 2014. Nanographene Oxide?Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano. 8(1):260-268. http://dx.doi.org/10.1021/nn405383a
49.
Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. 2009. Superparamagnetic graphene oxide?Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater.Chem.. 19(18):2710. http://dx.doi.org/10.1039/b821416f
50.
Lu C, Yang H, Zhu C, Chen X, Chen G. 2009. A Graphene Platform for Sensing Biomolecules. Angew.Chem. Int. Ed.. 48(26):4785-4787. http://dx.doi.org/10.1002/anie.200901479
51.
Wang Y, Li Z, Hu D, Lin C, Li J, Lin Y. 2010. Aptamer/Graphene Oxide Nanocomplex forin SituMolecular Probing in Living Cells. J. Am. Chem. Soc.. 132(27):9274-9276. http://dx.doi.org/10.1021/ja103169v
52.
Song Y, Chen Y, Feng L, Ren J, Qu X. 2011. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem. Commun.. 47(15):4436. http://dx.doi.org/10.1039/c0cc05533f