Saltar al contenido
Merck

Opening of Iris flowers is regulated by endogenous auxins.

Journal of plant physiology (2012-12-12)
Wouter G van Doorn, Isabelle Dole, Fisun G Celikel, Harmannus Harkema
RESUMEN

Flower opening in Iris (Iris×hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA(3)), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
3-Indoleacetic acid, 98%
Sigma-Aldrich
3-Indoleacetic acid, suitable for plant cell culture, crystalline
Sigma-Aldrich
trans-Zeatin, suitable for plant cell culture, BioReagent, ≥97%
Supelco
3-Indoleacetic acid, PESTANAL®, analytical standard
Sigma-Aldrich
DL-Homophenylalanine, 98%
Sigma-Aldrich
L-Homophenylalanine hydrochloride, 97%