Saltar al contenido
Merck
  • Healing for destruction: tRNA intron degradation in yeast is a two-step cytoplasmic process catalyzed by tRNA ligase Rlg1 and 5'-to-3' exonuclease Xrn1.

Healing for destruction: tRNA intron degradation in yeast is a two-step cytoplasmic process catalyzed by tRNA ligase Rlg1 and 5'-to-3' exonuclease Xrn1.

Genes & development (2014-07-18)
Jingyan Wu, Anita K Hopper
RESUMEN

In eukaryotes and archaea, tRNA splicing generates free intron molecules. Although ∼ 600,000 introns are produced per generation in yeast, they are barely detectable in cells, indicating efficient turnover of introns. Through a genome-wide search for genes involved in tRNA biology in yeast, we uncovered the mechanism for intron turnover. This process requires healing of the 5' termini of linear introns by the tRNA ligase Rlg1 and destruction by the cytoplasmic tRNA quality control 5'-to-3' exonuclease Xrn1, which has specificity for RNAs with 5' monophosphate.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), Type X-SA, lyophilized powder
Sigma-Aldrich
Ribonucleic acid, transfer from Escherichia coli, Type XX, Strain W, lyophilized powder
Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
Ribonucleic acid, transfer from bovine liver, Type XI, lyophilized powder
Sigma-Aldrich
Ribonucleic acid, transfer from wheat germ, Type V, 15-19 units/mg solid