Skip to Content
Merck
  • ROP and ATRP Fabricated Dual Targeted Redox Sensitive Polymersomes Based on pPEGMA-PCL-ss-PCL-pPEGMA Triblock Copolymers for Breast Cancer Therapeutics.

ROP and ATRP Fabricated Dual Targeted Redox Sensitive Polymersomes Based on pPEGMA-PCL-ss-PCL-pPEGMA Triblock Copolymers for Breast Cancer Therapeutics.

ACS applied materials & interfaces (2015-04-04)
Arun Kumar, Shantanu V Lale, Shveta Mahajan, Veena Choudhary, Veena Koul
ABSTRACT

To minimize cardiotoxicity and to increase the bioavailability of doxorubicin, polymersomes based on redox sensitive amphiphilic triblock copolymer poly(polyethylene glycol methacrylate)-poly(caprolactone)-s-s-poly(caprolactone)-poly(polyethylene glycol methacrylate) (pPEGMA-PCL-ss-PCL-pPEGMA) with disulfide linkage were designed and developed. The polymers were synthesized by ring opening polymerization (ROP) of ε-caprolactone followed by atom transfer radical polymerization (ATRP) of PEGMA. The triblock copolymers demonstrated various types of nanoparticle morphologies by varying hydrophobic/hydrophilic content of polymer blocks, with PEGMA content of ∼18% in the triblock copolymer leading to the formation of polymersomes in the size range ∼150 nm. High doxorubicin loading content of ∼21% was achieved in the polymersomes. Disulfide linkages were incorporated in the polymeric backbone to facilitate degradation of the nanoparticles by the intracellular tripeptide glutathione (GSH), leading to intracellular drug release. Release studies showed ∼59% drug release in pH 5.5 in the presence of 10 mM GSH, whereas only ∼19% was released in pH 7.4. In cellular uptake studies, dual targeted polymersomes showed ∼22-fold increase in cellular uptake efficiency in breast cancer cell lines (BT474 and MCF-7) as compared to nontargeted polymersomes with higher apoptosis rates. In vivo studies on Ehrlich's ascites tumor (EAT) bearing Swiss albino mouse model showed ∼85% tumor regression as compared to free doxorubicin (∼42%) without any significant cardiotoxicity associated with doxorubicin. The results indicate enhanced antitumor efficacy of the redox sensitive biocompatible nanosystem and shows promise as a potential drug nanocarrier in cancer therapeutics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutathione reduced, Vetec, reagent grade, ≥98%
Sigma-Aldrich
N,N,N′,N′′,N′′-Pentamethyldiethylenetriamine, 99%
Supelco
Dichloromethane solution, contains 10 % (v/v) methanol
Sigma-Aldrich
Cystamine dihydrochloride, 96%
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
N-Hydroxysuccinimide, 98%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Tin(II) 2-ethylhexanoate, 92.5-100.0%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.9%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Cystamine dihydrochloride, BioXtra
Sigma-Aldrich
1,1,1-Trifluoro-5,5-dimethyl-2,4-hexanedione, 98%
Sigma-Aldrich
Diethyl ether, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG