Skip to Content
Merck
  • Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase.

Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase.

Journal of the science of food and agriculture (2014-10-14)
Joo Hyun Baik, Kwang-Soon Shin, Yooheon Park, Kwang-Won Yu, Hyung Joo Suh, Hyeon-Son Choi
ABSTRACT

Green tea is a dietary source of bioactive compounds for human health. Enzymatic treatments induce the bioconversion of bioactive components, which can improve biological activities. In this study, we investigated the effect of simultaneous treatment with tannase and Rapidase on biotransformation of catechins and extraction of polysaccharide from green tea extract (GTE). Tannase and pectinase treatments induced the biotransformation of catechins and altered tea polysaccharide () content. The addition of GTE to the enzyme reaction resulted in a significant increase in degallated catechins, including gallic acid, a product of the tannase reaction (314.5-4076.0 µg mL(-1)) and a reduction in epigallocatechin gallate (EGCG). Biotransformation of catechins improved the radical scavenging activity of GTE. Pectinase treatment led to change of TPS composition in GTE by hydrolyzing polysaccharides. In addition, pectinase-driven hydrolysis in polysaccharides significantly increased TPS-induced Interleukin 6 (IL-6) production in macrophages. In particular, treatment of Rapidase (TPS-Ra) led to the highest IL-6 production among TPS samples, similar to treatment of highly purified pectinase (TPS-GTE), a positive control. Simultaneous processing with tannase and Rapidase can be an efficient method for the extraction of bioactive polysaccharides and biotransformation of catechins with enhanced radical scavenging activity from green tea.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
1,1-Diphenyl-2-picrylhydrazine, 97%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Caffeine, anhydrous, 99%, FCC, FG
Sigma-Aldrich
Tris(tert-pentoxy)silanol, ≥99.99%
Sigma-Aldrich
Gallic acid, 97.5-102.5% (titration)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥80% (HPLC), from green tea
Sigma-Aldrich
2,2-Diphenyl-1-picrylhydrazyl
Sigma-Aldrich
Caffeine, Sigma Reference Standard, vial of 250 mg
Sigma-Aldrich
Caffeine, meets USP testing specifications, anhydrous
Sigma-Aldrich
Caffeine, powder, ReagentPlus®
Sigma-Aldrich
Caffeine, BioXtra
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥95%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol