Przejdź do zawartości
Merck

Effect of intraoral aging on the setting status of resin composite and glass ionomer orthodontic adhesives.

American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics (2014-04-08)
Anna Iliadi, Stefan Baumgartner, Athanasios E Athanasiou, Theodore Eliades, George Eliades
ABSTRAKT

The aim of this study was to assess the effect of intraoral aging on the setting status of a resin composite and a glass ionomer adhesive, relative to control specimens stored in water. Metallic brackets were bonded with resin composite orthodontic adhesive (Transbond XT; 3M Unitek, Monrovia, Calif) or a glass ionomer cement (Fuji I; GC, Tokyo, Japan) to recently extracted premolars and kept in water for 6 months. The same materials were also bonded to the premolars of orthodontic patients. After 6 months, the teeth were carefully extracted, with the brackets intact on their buccal surfaces. All teeth were embedded in epoxy resin and sectioned buccolingually. Fourier transform infrared microscopy and Raman microscopy were used for the estimation of the degree of cure in the composite and the salt yield in the glass ionomer adhesives. The control samples of the composite showed significantly lower degrees of cure than did the retrieved specimens (52.40% ± 3.21% vs 57.62% ± 1.32% by Fourier transform infrared microscopy, and 61.40% ± 2.61% vs 67.40% ± 3.44% by Raman microscopy). Raman microscopy significantly overestimated the degree of cure and failed to provide reliable information for the salt yield in the glass ionomer cement. Fourier transform infrared microscopy showed increased, but no statistically significant difference in, aluminum-carboxylate salts in the retrieved specimens. Enhanced oxidation of residual carbon-carbon bonds in the composite and slightly increased dissolution of the weaker calcium-salt phase in the glass ionomer cement were the main differences in the intraorally aged specimens in comparison with the specimens stored in water.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Carbon, foil, 25x25mm, thickness 2.5mm, rigid graphite, fine grain size, 99.95%
Carbon, foil, 150x150mm, thickness 1.0mm, rigid graphite, fine grain size, 99.95%
Carbon, rod, 50mm, diameter 25mm, graphite, 100%
Carbon, microleaf, 25x70mm, thinness 0.25μm, specific density 50μg/cm2, temporary glass support, 99.997%
Carbon, foil, 300x300mm, thickness 0.2mm, flexible graphite, 99.8%
Carbon, rod, 100mm, diameter 2.0mm, graphite, 100%
Carbon, foil, not light tested, 300x300mm, thickness 0.075mm, flexible graphite, 99.8%
Carbon, foil, 50x50mm, thickness 1.0mm, rigid graphite, fine grain size, 99.95%
Carbon, rod, 50mm, diameter 25mm, graphite, 99.95%
Carbon, rod, 150mm, diameter 25mm, graphite, 100%
Carbon, foil, 25x25mm, thickness 0.5mm, rigid graphite, fine grain size, 99.95%
Carbon, tube, graphite, 150mm, outside diameter 12.7mm, inside diameter 9.5mm, wall thickness 1.6mm, 99.95%
Carbon, microleaf, 50x70mm, thinness 2.5μm, specific density 500μg/cm2, 99.997%
Carbon, foil, 4mm disks, thickness 0.2mm, flexible graphite, 99.8%
Carbon, foil, 50x50mm, thickness 0.25mm, rigid graphite, fine grain size, 99.95%
Carbon, foil, 50x50mm, thickness 1.0mm, flexible graphite, 99.8%
Carbon, foil, 50x50mm, thickness 0.5mm, flexible graphite, 99.8%
Carbon, foil, 25x25mm, thickness 0.1mm, pyrolytic graphite, 99.99%
Carbon, foil, 250x250mm, thickness 1.0mm, flexible graphite, 99.8%
Carbon, rod, 50mm, diameter 0.5mm, graphite, 99.95%
Carbon, rod, 150mm, diameter 2.0mm, graphite, 100%
Carbon, rod, 100mm, diameter 6.35mm, graphite, 100%
Carbon, foil, 5x5mm, thickness 2.0mm, hOpg
Carbon, foil, 50x50mm, thickness 2.5mm, rigid graphite, fine grain size, 99.95%
Carbon, foil, 50x50mm, thickness 0.1mm, pyrolytic graphite, 99.99%
Carbon, foil, 50mm disks, thickness 0.2mm, flexible graphite, 99.8%
Carbon, foil, 50x50mm, thickness 0.25mm, rigid graphite, fine grain size, 99.997%
Carbon, rod, 300mm, diameter 13.0mm, graphite, 100%
Carbon, rod, 300mm, diameter 25mm, graphite, 99.95%
Carbon, foil, not light tested, 100x100mm, thickness 0.075mm, flexible graphite, 99.8%