Saltar al contenido
MilliporeSigma
  • D,L-S-methyllipoic acid methyl ester, a kinetically viable model for S-protonated lipoic acid as the oxidizing agent in reductive acyl transfers catalyzed by the 2-oxoacid dehydrogenase multienzyme complexes.

D,L-S-methyllipoic acid methyl ester, a kinetically viable model for S-protonated lipoic acid as the oxidizing agent in reductive acyl transfers catalyzed by the 2-oxoacid dehydrogenase multienzyme complexes.

Biochemistry (1998-03-07)
K Pan, F Jordan
RESUMEN

D,L-S(6,8)-Methyllipoic acid methyl ester triflate salt (D,L-S-methyllipoic acid methyl ester) was synthesized as a model for S-protonated lipoic acid, suggested to be the active form of lipoic acid in the reductive acylation catalyzed by the E1 and E2 enzymes of the 2-oxoacid dehydrogenase multienzyme complexes by a previous model [Chiu, C. C., Chung, A., Barletta, G., and Jordan, F. (1996) J. Am. Chem. Soc. 118, 11026-11029]. While in that earlier study lipoic acid could only trap only the enamine/C2 alpha-carbanion intermediate in an intramolecular model, and with the assistance of mercury compound to shift the equilibrium to the products, D,L-S-methyllipoic acid methyl ester could trap the enamine derived from 2-alpha-methoxybenzyl-3,4,5-trimethylthiazolium salt in an intermolecular reaction in the absence of a mercury compound, and with a rate constant of 6.6 x 10(4) M-1 S-1. A tetrahedral adduct at the C2 alpha-position formed between the enamine and D,L-S-methyllipoic acid methyl ester was isolated and characterized. The reaction likely takes place by two-electron nucleophilic attack, since no evidence was found for C2 alpha-linked homodimers, expected from a free-radical mechanism. The results suggest that, in the reductive acyl transfer, there is nucleophilic attack by the enamine at one of the sulfur atoms of the lipoic acid [probably at S8, according to Frey, P. A., Flournoy, D. S., Gruys, K., and Yang, Y. S. (1989) Ann. N.Y. Acad. Sci. 373, 21-35], while there is concomitant electrophilic catalysis by a proton juxtaposed at S6 via a general acid catalyst located on the E1 enzyme. Oxidation of the enamine derived from C2 alpha-hydroxybenzyl-3,4,5-trimethylthiazolium salt by D,L-S-methyllipoic acid methyl ester was also deduced on the basis of the formation of 2-benzoylthiazolium ion as a major product; however, the tetrahedral intermediate could not be detected. Oxidation of the enamine by D,L-S-methyllipoic acid methyl ester can take place with either an ether or an alcohol at the C2 alpha position of the enamine.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Methyl trifluoromethanesulfonate, ≥98%