Saltar al contenido
MilliporeSigma

Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

PloS one (2014-04-17)
Anja Bauermeister, Alexander Mahnert, Anna Auerbach, Alexander Böker, Niwin Flier, Christina Weber, Alexander J Probst, Christine Moissl-Eichinger, Klaus Haberer
RESUMEN

Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Cloruro de sodio, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Sigma-Aldrich
Cloruro de sodio, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Cloruro de sodio, 99.999% trace metals basis
Supelco
Cloruro de sodio, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Cloruro de sodio, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Cloruro de sodio, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Cloruro de sodio, SAJ first grade, ≥99.0%
Sigma-Aldrich
Cloruro de sodio, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Cloruro de sodio, tablet
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Cloruro de sodio, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Cloruro de sodio, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.1 M