Saltar al contenido
MilliporeSigma
  • Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

Journal of medical entomology (2015-09-04)
Ralph B Narain, Sreedevi Lalithambika, Shripat T Kamble
RESUMEN

With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several new alleles in the bed bug populations in the Midwest.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Sodium acetate, anhydrous, Molecular Biology, ≥99%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, meets USP testing specifications
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium acetate, >99%, FG
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, suitable for luminescence, Molecular Biology, ≥99.0% (NT)
Supelco
Ethanol solution, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Etanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Etanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Etanol, ≥99.5%
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Etanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol solution, suitable for fixing solution (blood films)
Sigma-Aldrich
Etanol, 94.8-95.8%
Sigma-Aldrich
Etanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Etanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Etanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Etanol, JIS 300, ≥99.5%, suitable for residue analysis