Direkt zum Inhalt
Merck
  • Distinct Modes of Presynaptic Inhibition of Cutaneous Afferents and Their Functions in Behavior.

Distinct Modes of Presynaptic Inhibition of Cutaneous Afferents and Their Functions in Behavior.

Neuron (2019-03-04)
Amanda L Zimmerman, Eleni M Kovatsis, Riana Y Pozsgai, Aniqa Tasnim, Qiyu Zhang, David D Ginty
ZUSAMMENFASSUNG

Presynaptic inhibition (PSI) of primary sensory neurons is implicated in controlling gain and acuity in sensory systems. Here, we define circuit mechanisms and functions of PSI of cutaneous somatosensory neuron inputs to the spinal cord. We observed that PSI can be evoked by different sensory neuron populations and mediated through at least two distinct dorsal horn circuit mechanisms. Low-threshold cutaneous afferents evoke a GABAA-receptor-dependent form of PSI that inhibits similar afferent subtypes, whereas small-diameter afferents predominantly evoke an NMDA-receptor-dependent form of PSI that inhibits large-diameter fibers. Behaviorally, loss of either GABAA receptors (GABAARs) or NMDA receptors (NMDARs) in primary afferents leads to tactile hypersensitivity across skin types, and loss of GABAARs, but not NMDARs, leads to impaired texture discrimination. Post-weaning age loss of either GABAARs or NMDARs in somatosensory neurons causes systemic behavioral abnormalities, revealing critical roles of two distinct modes of PSI of somatosensory afferents in adolescence and throughout adulthood.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-vesikulärer Glutamattransporter 1-Antikörper, serum, Chemicon®
Sigma-Aldrich
Anti-Neurofilament 200 in Kaninchen hergestellte Antikörper, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Strychnin
Sigma-Aldrich
SR-95531, ≥98% (HPLC), powder
Sigma-Aldrich
CNQX, ≥98% (HPLC), solid